Bauart 3730 Elektropneumatischer Stellungsregler Typ 3730-5

Konfiguration und Bedienung über FOUNDATION™ fieldbus

Konfigurationshinweise

KH 8384-5

Firmwareversion K 2.08 /R 1.58

Ausgabe März 2021

Zu diesen Konfigurationshinweisen

Neben der Bedienung und Konfiguration des Stellungsreglers Typ 3730-5 über den Dreh-/ Druckknopf (Vor-Ort-Bedienung) und die SAMSON-SSP-Schnittstelle können Einstellungen auch über den FOUNDATION™ fieldbus vorgenommen werden. Montage, Inbetriebnahme, Vor-Ort-Bedienung und Konfiguration über die SAMSON-SSP-Schnittstelle mit der SAM-SON-Konfigurations- und Bedienoberfläche TROVIS-VIEW beschreibt die Einbau- und Bedienungsanleitung EB 8384-5.

Inhalt der vorliegeden Konfigurationshinweise KH 8384-5 sind die Grundlagen und Parameter zur Bedienung und Konfiguration über den FOUNDATION™ fieldbus.

Hinweis: Informationen zur Ventildiagnose EXPERTplus enthält die Bedienungsanleitung EB 8389.

Inhalt		Seite
1	Einführung	6
2	Aufbau und Wirkungsweise	7
2.1	Anwendungsart	8
2.2	Zusatzausstattung	9
2.2.1	Konfiguration mit TROVIS-VIEW	
2.2.2	Konfiguration mit NI-BUS™-Konfigurator	
2.3	Kommunikation	
3	FOUNDATION™ fieldbus Blockmodell	11
4	Initialisierung und Nullpunktabgleich des Gerätes	12
5	Rücksetzen des Gerätes	13
6	Statusklassifikation und Sammelstatus	14
7	FF-Parameter	16
7.1	Resource Block (RES)	16
7.2	Transducer Blöcke (Übertragungsblöcke)	17
7.2.1	Advanced Positioner Transducer Block (AO TRD)	17
7.3	Funktionsblöcke	20
7.3.1	Analog Output Function Block (AO FB)	
7.3.2	Proportional Integral Derivative Function Block (PID FB)	
7.3.3	Discrete Output Function Block (DO1 FB + DO2 FB)	
7.3.4	Discrete Input Function Block (DI1 FB + DI2 FB)	
7.3.5	Input Selector Function Block (IS FB)	
7.3.6	Multiple Analog Input Function Block (MAI FB)	29
7.3.7 7.4	Multiple Analog Output Function Block (MAO FB)	
7.4 7.4.1	Stale Counter	
7.4.1 7.4.2	Link Objekte	
7.4.3	LAS Funktionalität	
7.5	Parameterlisten	
7.5.1	Resource Block (RES)	
7.5.2	Advanced Positioner Transducer Block (AO TRD)	
7.5.3	Analog Output Function Block (AO FB)	
7.5.4	Proportional Integral Derivative Function Block (PID FB)	95
7.5.5	Discrete Output Function Block (DO FB)	110
7.5.6	Discrete Input Function Block (DI1 FB + DI2 FB)	116
7.5.7	Input Selector Function Block (IS FB)	121
7.5.8	Multiple Analog Input Function Block (MAI FB)	
7.5.9	Multiple Analog Output Function Block (MAO FB)	128

Änderungen der Stellungsregler-Firmware gegenüber Vorgängerversion

Änderungen der Stellungsregler-Firmware gegenüber Vorgängerversion		
alt	neu	
Kommunikation K 1.11	K 1.21	
Leckagesensor an Binär- eingang 2	Der Anschluss eines Leckagesensors an Binäreingang 2 (im Parameter CONFIG_BINARY_INPUT2 des AO Transducer Blocks Anwahl von LEAKAGE SENSOR) bewirkt: - eine Informationsangabe in Parameter XD_ERROR_EXT im AQ Transducer Block und das Generieren einer Diagnosemeldung sowie die Übernahme in die Protokollierung - die Wiedergabe des Zustands des Binäreingangs im Parameter BINARY_INPUT2 im AO Transducer Block	
Diagnosemeldung "Gerät nicht initialisiert"	Bei nicht initialisiertem Gerät wird die Diagnosemeldung "Gerät nicht initialisiert" generiert und der Condensed State auf "Ausfall" gesetzt.	
Anzeige des Arbeitsbereichs FINAL_VALUE_RANGE	Die Korrektur des Arbeitsbereichs FINAL_VALUE_RANGE über die Vor-Ort-Bedienung des Reglers (Code 8/9) wird ab Firmwareversion K 1.21 auch über Fieldbus übertragen.	
Nicht beschaltetes internes Magnetventil	Über eine Maskierung kann eingestellt werden, ob ein nicht beschaltetes interne Magnetventil einen AO Block Error und somit einen Blockalarm zur Folge hat.	
Parameter SOLENOID_SELECT	Mit dem Parameter SOLENOID_SELECT wird ab der Firmware K 1.21 eingestellt, ob ein Block Error "maintenance now" des AO Transducer Blocks einen Output Error im AO Block zur Folge hat.	
Parameter TOT_VALVE_TRAV_LIM	neuer Bereich: 1000 990 000 000	
	K 1.22	
Arbeitsbereich FINAL_VALUE_RANGE	Der Arbeitsbereich FINAL_VALUE_RANGE des AO Transducer Blocks wird bei der Eingabe gegen TRANSM_PIN_POS überprüft. Wird der Parameter TRANSM_PIN_POS geändert, wird geprüft, ob die Einstellung und die Einheit zum aktuellen Arbeitsbereich FINAL_VALUE_RANGE passt. Ist dies nicht der Fall, wird der Parameter FINAL_VALUE_RANGE auf 0 bis 100 % gesetzt.	
Parameter VALVE_TYPE	Der Parameter des AO Transducer Blocks wird in Abhängigkeit von der gewählten PIN_POS eingestellt. Bei VALVE_TYPE = OFF wird die letzte Einstellung beibehalten.	
Parameter FINAL_VALUE Die Stellgröße wird ab der Firmware K 1.22 mit FINAL_VALUE_ RANGE nicht wie bisher mit XD_SCALE.		
Anzeige Betriebsart O/S beim AO Transducer Block	Wird der AO Transducer Block in Betriebsart O/S gesetzt, wird dies in der Vor-Ort-Anzeige durch Hand/AUTO signalisiert.	
	K 1.23	
	interne Änderungen	

Änderungen der Stellungsregler-Firmware gegenüber Vorgängerversion

Änderungen der Stellungsreg	gler-Firmware gegenüber Vorgängerversion		
	K 1.24		
Parameter BUS_ADDRESS	Die Busadresse hat den Defaultwert 248.		
Gerätetyp	Im Auslieferungszustand ist das Gerät als Basic Device konfiguriert.		
	K 1.25		
	interne Änderungen		
	K 2.01		
Zusätzliche Funktionsblöcke	- 2x DO (Discrete Output) - 1x IS (Input Selector) - 1x MAI (Multiple Analog Input) - 1x MAO (Multiple Analog Output)		
Neue Funktionen	Im DO-Block (Discrete Output) wurden die folgenden neuen Funktionen implementiert:		
	 Diskrete Ansteuerung von Auf/Zu-Armaturen Starten des Teilhubtests (PST) Starten und Rücksetzen des Datenloggers Rücksetzen der Diagnose Stoppen der Diagnose Anfahren der Sicherheitsstellung Sperren der Vor-Ort-Bedienung 		
Sicherheitsverhalten	Befindet sich der AO-Übertragungsblock im Zustand "Out of Service" und wechselt der Sammelstatus in den Status "Ausfall" können folgende Aktionen ausgelöst werden: – Halten des letzten Wertes – Setzen der mechanischen Sicherheitsstellung		
	Anfahren eines vorgegebenen Sicherheitswertes		
	K 2.02		
Teilhubtest (PST)	Die Konfiguration des Teilhubtests (PST) über die FF-Parameter entfällt, die Konfiguration über die Bediensoftware TROVIS-VIEW ist weiterhin möglich.		
	К 2.03		
Teilhubtest (PST)	Die Konfiguration des Teilhubtests (PST) ist über die FF-Parameter und über die Bediensoftware TROVIS-VIEW möglich. Der Teilhubtest (PST) kann über den Binäreingang BE2 gestartet werden.		
	K 2.04 und K 2.05		
	interne Änderungen		
	K 2.07		
	Die zyklische Überprüfung der Gerätefunktionalität wurde um die Überwachung der internen Geräte-Kommunikation erweitert.		
	K 2.08		
	Re-Design der internen Kommunikationsschnittstelle: Die zulässige Taktrate an Kommunikationsaufrufen zwischen den internen Gerätecontrollern wurde optimiert.		

1 Einführung

Grundlage dieses Dokuments bilden:

- Fieldbus FOUNDATION™ Specification "Function Block Application Process Part 1 3" Revision 1.7 (FF-890 bis FF-892)
- Fieldbus FOUNDATION™ Specification "Positioner Transducer Block" Revision 3.0 (FF-906)

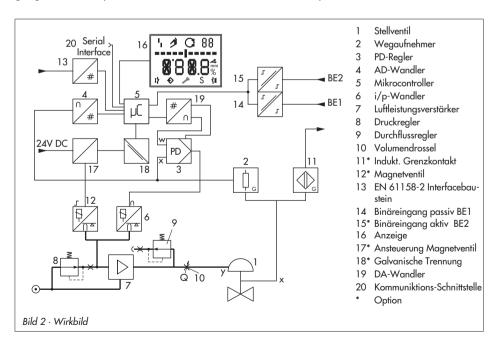
Stellungsregler Typ 3730-5

Der mikroprozessorgesteuerte Stellungsregler vergleicht die über den FOUNDATION™ Fieldbus zyklisch übertragene Führungsgröße mit dem Hub oder Drehwinkel eines Stellventils und steuert zur Korrektur einen pneumatischen Stelldruck aus.

Merkmale:

- Link-Master-Funktionalität
- Einfacher Anbau an gängige Hubantriebe mit Schnittstelle für SAMSON-Direktanbau, NAMUR-Rippe oder Stangenanbau nach IEC 60534-6-1 sowie an Schwenkantriebe nach VDI/VDE 3845
- Beliebige Anbaulage des Stellungsreglers
- Ein-Knopf-Bedienung mit Menüführung
- Automatische Inbetriebnahme
- LC-Display in jeder Anbaulage durch umschaltbare Leserichtung gut ablesbar
- Integrierte Diagnosefunktion EXPERTplus geeignet für Regelventile, Auf/Zu-Ventile und mit zusätzlichem Teilhubtest für Ventile in Sicherheitsanwendungen
- Klassifizierte Statusmeldungen nach NE 107
- Online-Änderung von Regelparametern
- Automatische Überwachung des Nullpunktes
- Kalibrierter Wegaufnehmer ohne anfälliges Getriebe
- Netzausfallsichere Speicherung der Parameter
- Einstellbare Ausgangsdruckbegrenzung
- Einstellbare Dichtschließfunktion
- Binäreingang für Gleichspannungssignale
- Zertifiziert nach IEC 61508/SIL

2 Aufbau und Wirkungsweise


Der Stellungsregler wird an pneumatische Stellventile angebaut und dient der Zuordnung von Ventilstellung (Regelgröße x) zum Stellsignal (Führungsgröße w). Das Stellsignal einer Regeloder Steuerungseinrichtung wird mit dem Hub oder Drehwinkel des Stellventils verglichen und ein Stelldruck (Ausgangsgröße y) für den pneumatischen Antrieb ausgegeben.

Der Stellungsregler besteht im Wesentlichen aus einem elektrischen Wegaufnehmersystem, einem analog arbeitenden i/p-Wandler mit einem nachgeschalteten Verstärker sowie der Elektronik mit Mikrocontroller.

Bei einer Regeldifferenz wird der Antrieb be- oder entlüftet. Bei Bedarf kann die Stelldruckänderung mit einer zuschaltbaren Volumendrossel verlangsamt werden. Per Software oder vor Ort lässt sich der Stelldruck zum Antrieb auf 1,4 bar, 2,4 bar oder 3,7 bar begrenzen.

Über den fest eingestellten Durchflussregler wird ein konstanter Luftstrom zur Atmosphäre hergestellt, der zum einen der Spülung des Gehäuseinneren und zum anderen der Optimierung des Luftleistungsverstärkers dient. Der i/p-Wandler wird über den Druckregler mit einem konstanten Vordruck versorgt, um Zuluftdruckabhängigkeiten zu verhindern.

Die Kommunikation und die Speisung des Stellungsreglers erfolgt in IEC 61158-2 Übertragungstechnik entsprechend der FOUNDATIONTM-Fieldbus-Spezifikation.

Aufbau und Wirkungsweise

Der Stellungsregler besitzt standardmäßig einen Binäreingang für Gleichspannungssignale, über den eine beliebige Prozessinformation über den FOUNDATIONTM fieldbus signalisiert werden kann.

Die erweiterte Ventildiagnose EXPERTplus ist in den Stellungsregler integriert. Sie bietet Informationen über den Stellungsregler und generiert Diagnose- und Statusmeldungen die im Fehlerfall eine schnelle Fehlerortung ermöglichen.

2.1 Anwendungsart

Es stehen die Anwendungsarten **Regelventil und Auf/Zu-Ventil** zur Verfügung. In beiden Anwendungsarten können die Betriebsarten G-Automatikbetrieb (AUTO) und 🤌-Handbetrieb (MAN) gewählt werden.

Abhängig von der gewählten Anwendungsart zeigt der Stellungsregler ein abweichendes Verhalten im C: -Automatikbetrieb (AUTO).

Die Ansteuerung über FOUNDATIONTM fieldbus erfolgt über den AO Funktionsblock (Regelventil) und den DO1 Funktionsblock (Auf/Zu-Ventil). Die Anwendungsart kann im Resource Block über den Parameter SELECT_DO_1 oder am Gerät über Code 49 - h0 eingestellt werden.

	Regelventil	Auf/Zu-Ventil
Betriebsart AUTO	Der Stellungsregler folgt stetig der vorge- gebenen Führungsgröße. Im Display wird die Ventilposition (Istposi- tion) in % angezeigt.	Diskrete Auswertung der vorgegebenen Führungsgröße. Im Display wird die Ventilposition (Istposition) in % und im Wechsel "O/C" (Open/Close) angezeigt.
Betriebsart HAND 🧷	Der Stellungsregler folgt der über die Vor-Ort-Bedienung vorgegebenen Führungsgröße.	

Hinweise:

- Je nach Anwendungsart können bestimmte Diagnosefunktionen nicht ausgeführt oder ausgewertet werden, siehe EB 8389 "Ventildiagnose EXPERTplus".
- Im Handbetrieb kann ein Auf/Zu-Ventil bei Schließstellung ATO über 100 %, bei Schließstellung ATC unter 0 % des Nennbereiches verfahren werden.

2.2 Zusatzausstattung

Magnetventil

Bei Ausfall der Betriebsspannung für das Magnetventil (12), wird der Versorgungsdruck für den i/p-Wandler gegen Atmosphäre entlüftet. Der Stellungsregler kann nicht arbeiten und das Stellventil geht, unabhängig von der Führungsgröße, in die vom Antrieb vorgegebene Sicherheitsstellung.

ACHTUNG!

Im Handbetrieb (MAN) wird auch der Hand-Sollwert auf 0 % zurückgesetzt. Ein abweichender Hand-Sollwert muss neu geschrieben werden (Code 1).

Induktiver Grenzkontakt

Bei dieser Ausführung trägt die Drehachse des Stellungsreglers eine einstellbare Steuerfahne zur Betätigung des eingebauten Schlitzinitiators.

Externer Positionssensor

Bei dieser Ausführung ist nur der Sensor am Ventil montiert. Der Stellungsregler wird ventilunabhängig platziert. Die Verbindung von x- und y-Signal zum Ventil wird durch Kabel und Luftleitung vorgenommen (nur ohne induktiven Grenzkontakt).

Binäreingänge

Binäreingang BE1 (14)

Der Stellungsregler besitzt standardmäßig einen Binäreingang für Gleichspannungssignale, über den eine beliebige Prozessinformation über den FOUNDATIONTM fieldbus signalisiert werden kann, sowie den optionalen Binäreingang BE2.

Binäreingang BE2 (15)

Der optionaler Binäreingang BE2 ist ein aktiver, vom Stellungsregler gespeister Eingang zum Anschluss eines potentialfreien Kontaktes, dessen Schaltzustand ebenfalls über den FOUNDATIONTM fieldbus signalisiert werden kann.

Hinweis: Die Konfiguration der Binäreingänge erfolgt in den DI-Funktionsblöcken.

Konfiguration mit TROVIS-VIEW 2.2.1

Die Konfiguration des Stellungsrealers kann mittels SAMSON-Konfigurations- und Bedienoberfläche TROVIS-VIEW erfolgen.

Der Stellungsregler wird hierfür mit seiner digitalen Schnittstelle SERIAL INTERFACE über ein Adapterkabel mit der RS-232- oder der USB-Schnittstelle des PCs verbunden.

TROVIS-VIEW erlaubt eine einfache Parametrierung des Stellungsreglers und die Visualisierung der Prozessparameter im Online-Betrieb.

Konfiguration und Bedienung des Stellungsreglers über TROVIS-VIEW sind in der Einbauund Bedienungsanleitung EB 8385-4 beschrieben.

Konfiguration mit NI-BUS™-Konfigurator 2.2.2

Die Konfiguration des Stellungsregers kann auch über den NI-FBUS™ Konfigurator von National Instruments erfolgen. Zur Anbindung an den FOUNDATION™ fieldbus wird eine Interface Karte im PC benötigt.

Mit dem NI-FBUS™ Konfigurator können die integrierten Funktionsblöcke verschaltet werden.

2.3 Kommunikation

Die komplette Ansteuerung des Stellungsreglers erfolgt in digitaler Signalübertragung nach der FOUNDATIONTM fieldbus-Spezifikation.

Die Datenübertragung erfolgt als bitsynchrone Strommodulation mit einer Geschwindigkeit von 31.25 kbit/s auf verdrillten Zweidraht-Leitungen entsprechend EN 61158-2.

Hinweis: Werden im Stellungsregler aufwändige Funktionen gestartet, die eine längere Berechnungszeit oder größere Datenmengen in den flüchtigen Speicher des Stellungsreglers speichern, wird über die DD "Gerät beschäftigt/busy" gemeldet.

Diese Meldung ist **keine Fehlermeldung** und kann einfach auttiert werden.

3 FOUNDATION™ fieldbus Blockmodell

Bei FOUNDATION™ fieldbus werden sämtliche Funktionen und Daten eines Gerätes unterschiedlichen Blocktypen zugeordnet. Jeder Blocktyp hat im Blockmodell einen anderen Aufgabenbereich. Im SAMSON Stellungsregler Typ 3730-5 sind folgende Blocktypen implementiert:

Resource Block (RES)

Der Resource Block (RES) beinhaltet alle gerätespezifischen Merkmale eines Gerätes auf dem Feldbus, wie z.B. Gerätename, Hersteller- und Seriennummer, Jedes Gerät kann nur einen Resource Block haben

Function Blöcke (Funktionsblöcke, FB)

Funktionsblöcke sind für das Regelverhalten eines FOUNDATION™ fieldbus-Gerätes verantwortlich. Durch Verbinden der Ein- und Ausgänge von Funktionsblöcken kann eine FOUNDATION™ fieldbus-Applikation konfiguriert werden.

Im Typ 3730-5 implementierte Funktionsblöcke sind:

- 1x Proportional Integral Derivative Function Block (PID FB); Ausführungszeit 20 ms
- 1x Analog Output Function Block (AO FB); Ausführungszeit 30 ms
- 2x Discrete Input Function Blocks (DI FB); Ausführungszeit 20 ms
- 2x Discrete Output Function Blocks (DO FB): Ausführungszeit 30 ms
- 1x Multiple Analog Input Function Block (MAI FB); Ausführungszeit 50 ms
- 1x Multiple Analog Output Function Block (MAO FB); Ausführungszeit 50 ms
- 1x Input Selector Function Block (IS FB); Ausführungszeit 30 ms

Transducer Blöcke (Übertragungsblöcke, TRD)

Jeder Ein- und Ausgangsfunktionsblock hat einen Transducer Block, der alle Daten und gerätespezifischen Parameter zur Ankopplung an den Prozesswert (Sensor oder Aktor) beinhaltet.

Entsprechend der Funktionsblöcke sind folgende Transducer Blöcke implementiert:

- 1x Advanced Positioner Transducer Block (AO TRD)
- 2x Discrete Input Transducer Blocks (DI TRD)
- 2x Discrete Output Transducer Blocks (DO TRD)
- 1x Multiple Analog Input Transducer Block (MAI TRD)
- 1x Multiple Analog Output Transducer Block (MAO TRD)

4 Initialisierung und Nullpunktabgleich des Gerätes

Mit dem Parameter XD COMMAND des AO Transducer Blocks kann sowohl eine Initialisierung, wie auch ein Nullpunktabgleich gestartet werden. Nachfolgend sind die relevanten Parameter für eine MAX/NOM-Initialisierung und die Diagnosefunktionalitäten von EXPERTolus aufaelistet (val. EB 8389)

- APPLICATION TYPE OC CONTROL (Auswahl der Anwendungsart)
- INIT METHOD (Initialisierungsart)
- TRANS PIN POS (Position des Abtaststifts)
- RATED TRAVEL (Gewünschter Nennbereich bei NOM-Initialisierung)
- PRESSURE LIMIT (Einstellung der Druckbegrenzung)
- SELECT EMERGENCY MODE (Einstellung bei defektem Wegaufnehmer)
- DEVICE CHARACTERISTIC (Einstellungen zum Antrieb und weiteren Anbaugeräten)

MODEL (Antrieb mit oder ohne Federrückstellung)

BOOSTER (Pneumatischer Volumenverstärker)

STUFFING BOX (Abdichtung der Kegelstange nach außen)

XD COMMAND (Mit "Start Initialization" die Initialisierung starten)

XD COMMAND STATE (Status der Initialisierung)

Hinweis: Bei der Inbetriebnahme des Stellungsreglers ist das entsprechende Kapitel aus der Einbau- und Bedienungsanleitung EB 8384-5 zu beachten.

5 Rücksetzen des Gerätes

Das Rücksetzen der Inbetriebnahme- und Diagnosedaten entsprechend Code 36 Std erfolgt über den Parameter XD COMMAND (41) des AO Transducer Blocks.

Das Rücksetzen der Gerätedaten und die Verschaltung der Funktionsblöcke auf die in der Spezifikation festgelegten Werte, erfolgt über den Wert "DEFAULTS" im Parameter RESTART (16) des RES Blocks.

Ein Warmstart des Gerätes erfolgt über den Wert "PROCESSOR" im Parameter RESTART (16) des RES Blocks

Das Rücksetzen der kompletten Diagnosedaten, sowie einzelne Meldungen und Histogramme erfolgt über den Parameter RESET STATUS MESSAGE DIAG (147) des AO Transducer Blocks.

Statusklassifikation und Sammelstatus 6

Alle Statusmeldungen werden im Stellungsregler mit einem Status klassifiziert, mit der ein aufgetretener Fehler gemeldet wird. Änderungen in der Statusklassifizierung sind über folgende FF-Parameter im AO Transducer Block (AO TRD) möglich:

- ERROR OPTION INIT FAILURE (36): Maskierung der Initialisierungsfehler
- ERROR OPTION OPERATION FAILURE (37):
 - Maskierung der Betriebsfehler
- ERROR OPTION HW FAILURE (38):
 - Maskieruna der Hardwarefehler
- ERROR OPTION DATA FAILURE (39): Maskierung der Datenfehler
- ERROR OPTION ENH DIAGNOSTIC (40 bis 44): Maskierung von Status- und Fehlermeldungen der Diagnose

Um eine bessere Übersicht zu gewährleisten, verdichten sich die klassifizierten Meldungen zu einem Sammelstatus (CONDENSED STATE (59) im RES Block). Zusätzlich zum Parameter CONDENSED STATE kann der Sammelstatus auf den diskreten Ausaana OUT D der DI Function Blocks (DI1 FB + DI2 FB) ausgegeben werden.

Mögliche Zustände des Sammelstatus sind:

0	ok	
1	Wartungs- bedarf	Gerät kann seiner Aufgabenstellung noch (eingeschränkt) folgen, ein Wartungsbedarf bzw. überdurchschnittlicher Verschleiß wurde festgestellt. Der Abnutzungsvorrat ist bald erschöpft bzw. nimmt schneller ab als vorgesehen. Ein Wartungseingriff ist mittelfristig notwendig.
2	Wartungs- anforde- rung	Gerät kann seiner Aufgabenstellung noch (eingeschränkt) folgen, ein Wartungsbedarf bzw. überdurchschnittlicher Verschleiß wurde festgestellt. Der Abnutzungsvorrat ist bald erschöpft bzw. nimmt schneller ab als vorgesehen. Ein Wartungseingriff ist kurzfristig notwendig.
3	Ausfall	Gerät kann auf Grund einer Funktionsstörung im Gerät oder an seiner Peripherie seiner Aufgabenstellung nicht folgen oder hat noch keine erfolgreiche Initialisierung durchlaufen.
7	Funktions- kontrolle	Am Gerät werden Test- oder Abgleichprozeduren durchgeführt, dass Gerät kann für die Dauer dieser Prozedur seiner Aufgabenstellung vorübergehend nicht folgen.

Zusätzlich zum Sammelstatus können auch die Meldungen des Blockfehlers (BLOCK ERR) vom RES Block und Transducer Block den Ereignissen zugeordnet werden.

Dazu können im AO Transducer Block (AO TRD) in den Parametern ERROR OPTION ... (In-

dex 36 bis 44) die einzelnen Meldungen mit einem weiteren Status für den Blockfehler klassifiziert werden. Nachfolgende Zuordnungen sind möglich:

- No message (keine Meldung)
- Device needs maintenance soon (Wartung ist bald erforderlich)
- Device needs maintenance now (Wartung ist jetzt erforderlich)

Der Blockfehler (BLOCK_ERR) ergibt sich dann aus der Verdichtung der aktiven klassifizierten Meldungen.

7 **FF-Parameter**

Einige Parameter können nur in bestimmten Betriebsarten verändert werden (siehe "Zuariff" in Parameterbeschreibung). Entscheidend dafür ist nicht die aktuelle Betriebsart (Actual Mode), sondern die eingestellte Zielbetriebsart (Target Mode).

7.1 **Resource Block (RES)**

Der RES Block beinhaltet alle Daten, die das Gerät eindeutig identifizieren. Er entspricht einem elektronischem Typenschild des Gerätes, Parameter des RES Blocks sind z. B. Gerätetyp, Gerätename, Herstelleridentifizierung, Seriennummer, sowie Parameter, die das Verhalten aller weiteren Blöcke des Gerätes beeinflussen.

Parameterliste, siehe Seite 33

Hinweis: Gemäß Fieldbus-Spezifikation Version 1.7 sind alle Zeitangaben im RES Block in der Einheit 1/32 ms.

In der von der Fieldbus FOUNDATION gelieferten Device Description Library, welche auch die Grundlage für die Device Description des Typs 3730-5 darstellt, werden diese Parameter fälschlicherweise mit der Einheit ms dargestellt. Die vom Gerät gelieferten Zahlenwerte sind jedoch immer in der Einheit 1/32 ms zu interpretieren.

7.2 Transducer Blöcke (Übertragungsblöcke)

Transducer Blöcke koppeln die Funktionsblöcke an Ein- und Ausgangsgrößen eines Feldgerätes. So werden z.B. die DI Function Blocks an die physikalischen Binäreingänge, ein internes Magnetventil, die aktuelle Ventilstellung oder aber den Sammelstatus des Gerätes gekoppelt. Diese Kopplung an die unterschiedlichen Transducer Blöcke erfolgt über den Parameter CHANNEL der einzelnen Funktionsblöcke. Nachfolgend ist die Zuordnung der CHANNEL aufgelistet:

CHANNEL	Funktionsblock
1	DI1
2	DI2
3	AO
4	MAI
5	MAO
6	DO1
7	DO2

Die Transducer Blöcke DI TRD, DO TRD, MAI TRD und MAO TRD sind entsprechend der FF-Spezifikation implementiert und enthalten keine herstellerspezifischen Parameter.

Advanced Positioner Transducer Block (AO TRD) 7.2.1

Der Advanced Positioner Transducer Block (AO TRD) erhält einen Stellwert aus einem vorgeschalteten AO Function Block (AO FB). Dieser Wert wird zur Positionierung eines Regelventils verwendet. Der Block enthält Parameter zur Anpassung an Antrieb und Ventil, zur Inbetriebnahme und zur Diagnose des Stellventiles.

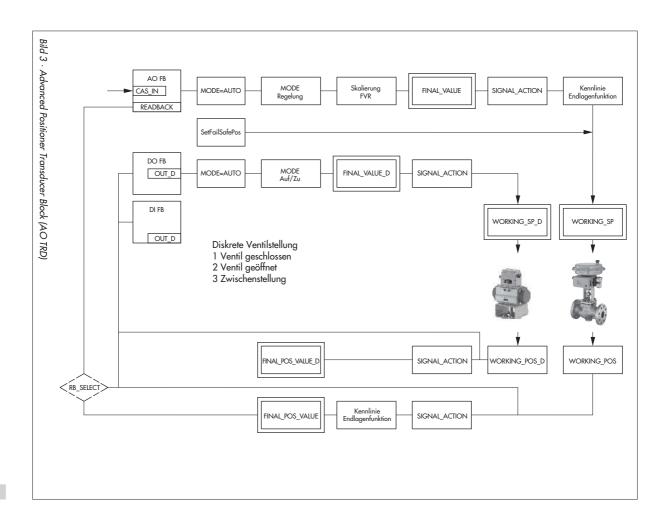
Sicherheitsverhalten

Das Sicherheitsverhalten für den Zustand "Ausfall" im Sammelstatus lässt sich im Parameter XD FSTATE OPT wie folgt konfigurieren:

- "Hold last value" (Halten des letzten gültigen Wertes)
- "Fail-safe position" wird angefahren (mechanische Sicherheitsstellung)
- Vorgegebener Sicherheitswert XD_FSTATE VAL wird angefahren

Das Sicherheitverhalten für den Übergang der Betriebsart OUT OF SERVICE (O/S) lässt sich im Parameter XD OOS OPT wie folgt konfigurieren:

"Hold last value" (Halten des letzten gültigen Wertes)


- "Fail-safe position" wird angefahren (mechanische Sicherheitsstellung)
- Vorgegebener Sicherheitswert XD FSTATE VAL wird angefahren

Der AO Transducer Block (AO TRD) kann weiterhin einen Output Error im AO Function Block (AO FB) setzen. Hierfür können im Parameter ALARM OPTIONS folgende Ereignisse als Auslöser konfiguriert werden:

- No (never)
- Local Override (wenn AO TRD im Mode LOCAL OVERRIDE ist, d. h. das Gerät vor Ort im Mode SAFE gesetzt oder internes Magnetventil aktiv)
- MAN (wenn AO TRD im Mode MAN ist)
- Block Alarm (wenn AO TRD einen Block Error MAINTENANCE NOW hat)
- AO TRD fault state (wenn das Sicherheitsverhalten aktiv ist)
- AO O/S set fault state (wenn AO FB im Mode O/S ist, wird FSTATE_VAL des AO FB anaefahren)

Parameterbeschreibung (Bild 3)

Regelventil	
FINAL_VALUE	Führungsgröße des vorgeschalteten AO FB (Regelarmatur)
FINAL_POS_VALUE	Ventilstellung nach Rückskalierung
WORKING_SP	Führungsgröße nach Skalierung, Kennlinie, Endlagenfunktion (entspricht der Regelgröße des Regelalgorithmus)
WORKING_POS	Tatsächliche Ventilstellung
READBACK_SELECT	Auswahl des Parameters, der auf den READBACK des AO FB gegeben wird
Auf/Zu-Ventil	
FINAL_VALUE_D	Diskrete Führungsgröße des vorgeschalteten DO FB
FINAL_POS_VALUE_D	Diskrete Ventilstellung nach Berücksichtigung der Bewegungsrichtung
WORKING_SP_D	Führungsgröße nach Berücksichtigung der Bewegungsrichtung (entspricht der Führungsgröße des Regelalgorithmus)
WORKING_POS_D	Tatsächliche diskrete Ventilstellung

7.3 **Funktionsblöcke**

7.3.1 Analog Output Function Block (AO FB)

Der AO Function Block verarbeitet ein von einem vorgeschalteten Block (z. B. PID Function Block) erhaltenes Analogsignal zu einem für den nachgeschalteten Transducer Block (z. B. Ventilstellungsregler) verwendbaren Stellwert. Er beinhaltet dazu unter anderem Skalierungsfunktionen und Rampenfunktionen. Der gebildete Ausgangswert OUT wird über den CHANNEL an den nachgeschalteten Transducer Block weitergeleitet.

Der AO Function Block (AO FB) erhält seinen Sollwert SP je nach Betriebsart (MODE BLK)

- per manueller Einaabe von SP (AUTO)
- direkt von einem vorgeschalteten Funktionsblock (CAS IN)
- direkt von einem Feldbus-Host-System (RCAS IN)

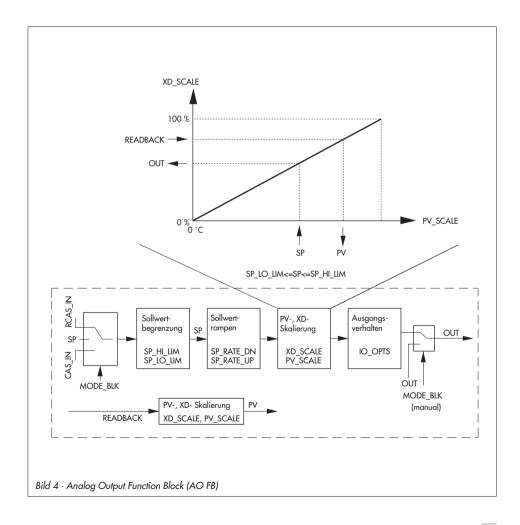
Aus SP wird ein interner Arbeitssollwert PV gebildet unter Berücksichtigung von

- SP HI LIM (Führungsgrößenbegrenzung oben)
- SP LO LIM (Führungsgrößenbegrenzung unten)
- SP RATE DN (Rampensteilheit für abfallende Führungsgrößenänderungen in der Betriebsart AUTO)
- SP RATE UP (Rampensteilheit für ansteigende Führungsgrößenänderungen in der Betriebsart AUTO)
- PV_SCALE (Bereich der Prozessvariablen (PV) (Anfang, Ende, Einheit und Dezimalpunkt))

Der Ausgangswert OUT wird gebildet unter Berücksichtigung von

- XD_SCALE (Bereich der Stellgröße (OUT) (Anfang, Ende, Einheit und Dezimalpunkt))
- IO OPTS (Auswahl des Ein-/Ausgangsverhalten des AO TRD, z. B. das Sicherheitsverhalten)

Sicherheitsverhalten


Sicherheitsverhalten bei einer Kommunikationsstörung (Status BAD)

- Standardmäßig wird der letzte gültige Wert verwendet.
- Durch Auswahl von "FAULT STATE TO VALUE" im Parameter IO OPTS wird der im AO FB konfigurierte Sicherheitswert FSTATE VAL angefahren.
- FSTATE TIME definiert die Dauer, über die der "Fault State" anliegen muss, bis das Sicherheitsverhalten ausgelöst wird.

Sicherheitsverhalten in der Betriebsart OUT OF SERVICE (O/S)

Nach Übergang des AO FB in die Betriebsart O/S wird standardmäßig der letzte gültige Ausgangswert gehalten.

- Durch Auswahl von "AO O/S set fault state" im Parameter ALARM OPTIONS des AO TRD wird der konfigurierte Sicherheitswert FSTATE VAL des AO FB angefahren.
- FSTATE_TIME definiert die Dauer, über die der "Fault State" anliegen muss, bis das Sicherheitsverhaltren ausgelöst wird.

Proportional Integral Derivative Function Block (PID FB) 7.3.2

Ein PID Function Block beinhaltet die Eingangskanal-Verarbeitung, die proportional-integraldifferentiale Regelung (PID) und die analoge Ausgangskanal-Verarbeitung.

Die Konfiguration des PID Function Blocks (PID-Regler) ist abhängig von der jeweiligen Automatisierungsaufgabe. Realisierbar sind einfache Regelkreise, Regelungen mit Störgrößenaufschaltung, Kaskadenregelung und Kaskadenregelung mit Begrenzung in Verbindung mit einem weiteren Reglerblock.

Für die Messwertverarbeitung innerhalb des PID Function Blocks (PID-Regler) stehen u. a. die folgenden Möglichkeiten zur Verfügung: Signalskalierung, Signalbegrenzung, Betriebsartsteuerung, Störgrößenaufschaltung, Begrenzungsregelung, Alarmerkennung und Weiterleituna des Sianalstatus.

Der PID Function Block (PID-Regler) kann für verschiedene Automatisierungsstrategien eingesetzt werden. Der Baustein besitzt einen flexiblen Regelalgorithmus, der je nach Applikation unterschiedlich konfiguriert werden kann.

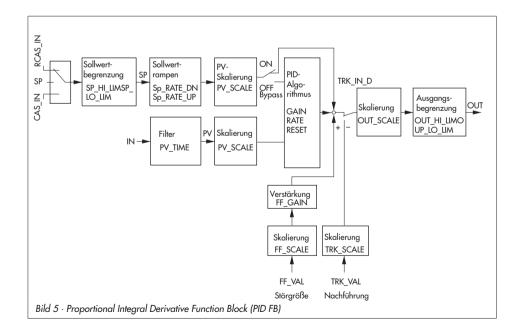
Der PID Function Block erhält seinen Sollwert je nach Betriebsart (MODE BLK) aus den Eingangsgrößen CAS IN, RCAS IN oder SP. Daraus wird unter Berücksichtigung von PV SCALE, SP HI LIM und SP LO LIM, SP RATE_UP und SP_RATE_DN ein interner Arbeitssollwert gebildet.

Den Istwert erhält der Block über die Eingangsvariable IN. Daraus wird unter Berücksichtigung von PV SCALE und dem Filter 1. Ordnung PV FTIME die Prozessvariable PV gebildet. Diese Werte werden dem internen PID-Algorithmus zugeführt. Dieser Algorithmus (PID-Regler) besteht aus einem Proportional-, einem Integral- und einem Differential-Anteil. Die Stellgröße wird aufarund der Reaeldifferenz zwischen dem Sollwert SP und der Prozessvariablen PV (Istwert) berechnet.

Die einzelnen PID-Anteile fließen wie folgt in die Berechnung der Stellgröße ein:

- Proportionalanteil:
 - Auf eine Änderung des Sollwertes SP oder der Prozessvariablen PV (Istwert) reagiert der Proportionalanteil unmittelbar und direkt. Über den Proportionalfaktor GAIN erfolgt eine Anderung der Stellgröße, die mit der Regeldifferenz multipliziert dem Verstärkungsfaktor entspricht. Arbeitet ein Regler nur mit dem Proportionalanteil, so weist die Regelung eine bleibende Regeldifferenz auf.
- Integralanteil:
 - Die bei der Berechnung der Stellgröße mittels des Proportionalanteils entstandene Regeldifferenz wird über den Integralanteil des Reglers solange integriert, bis sie vernachlässigbar ist. Die Integralfunktion korrigiert die Stellgröße in Abhängigkeit von der Größe und Dauer der Regeldifferenz. Wird der Wert für die Integrationszeit RESET auf Null ge-

setzt, so arbeitet der Regler als P-bzw. PD-Regler. Der Einfluss des Integralanteils auf die Regelung vergrößert sich, wenn der Wert der Integrationszeit RESET verkleinert wird.


Differentialanteil:

Bei Regelstrecken mit großen Verzögerungszeiten, z. B. bei Temperaturregelungen, ist es sinnvoll, den Differentialanteil des Realers einzusetzen. Mittels des Differentialanteils RATE erfolgt eine Berechnung der Stellgröße in Abhängigkeit von der Änderung der Regeldifferenz.

Entsprechend den Parametern OUT SCALE, OUT HI LIM und OUT LO LIM wird aus der berechneten Stellgröße ein Ausgangswert OUT gebildet, welcher an einen nachgeschalteten Funktionsblock weitergeleitet werden kann.

Durch den Parameter STATUS OPTS kann abhänaia vom Status der Einaanasarößen des PID Function Blocks der Status des Ausgangswertes OUT beeinflusst werden. Dadurch kann z. B. das Sicherheitsverhalten eines nachfolgenden Ausgangsblocks aktiviert werden.

Der Parameter BYPASS erlaubt das direkte Durchreichen des internen Sollwertes auf den Stellwert. Über die Eingangsvariable FF VAL ist eine Störgrößenaufschaltung möglich, TRK IN D und TRK VAL ermöglichen die direkte Führung des Ausgangswertes.

Discrete Output Function Block (DO1 FB + DO2 FB) 7.3.3

Der DO Function Block verarbeitet ein diskretes Sianal eines voraeschalteten Funktionsblocks und stellt dieses über den voreingestellten CHANNEL als diskrete Führungsgröße OUT D zur Verfügung.

Die beiden DO Function Blocks lassen sich über die Parameter SELECT DO 1...2 im Resource Block verschiedenen Anwendungen zuordnen. Folgende Anwendungen werden unterstützt:

Open/Close Application

Der Modus zur diskreten Ansteuerung von Auf/Zu-Armaturen wird nur vom DO1 FB unterstützt. Dabei entspricht die Führungsgröße OUT D = 0 einem geschlossenen Ventil und OUT D = 1 einem voll geöffneten Ventil.

Diese Anwendungsart wird über den Parameter APPLICATION TYPE OC CONTROL im AO TRD eingestellt. Ist der Modus aktiviert, so wird dieses im Display des Stellungsreglers unter Code 0 mit "O/C" dargestellt (abwechselnd "O/C" und aktuelle Ventilposition).

Start VST (Valve Stroke Test)

Diese Anwendung dient zum Starten eines Teilhubtests (PST) oder eines Vollhubtests (FST). Die Einstellungen hierfür sind im AO TRD vorzunehmen, siehe auch EB 8389 "Ventildiagnose EXPERTplus".

Reset Diagnosis

Der Befehl setzt die Daten der Beobachter- und Testfunktionen zurück (siehe auch Parameter RESET STATUS MESSAGE DIAG des AO TRD). Die festgelegte Klassifizierung der Statusmeldungen und die Protokollierung bleiben erhalten.

Reset message logger

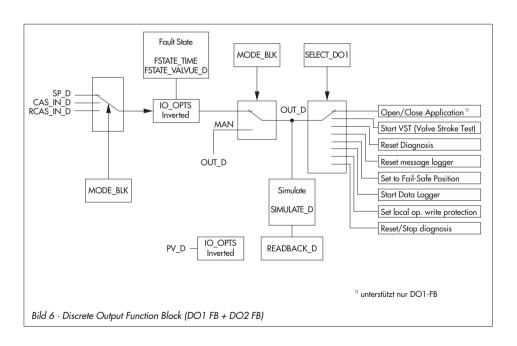
Der Befehl setzt die Protokollierung zurück (siehe auch Parameter RESET STATUS MESSAGE DIAG des AO TRD).

Set to Fail-Safe Position

Der Befehl lässt das Ventil in die mechanische Sicherheitsstellung verfahren (siehe auch SET FAIL SAFE POS des AO TRD). Dieser Zustand wird durch ein blinkendes "S" im Display des Stellungsreglers angezeigt.

Start Data Logger

Der Befehl startet bzw. stoppt den Datenlogger des Stellungsreglers (siehe auch Parameter START STOP ALL FUNCTION des AO TRD). Dabei startet die Führungsgröße OUT D = 1 den Datenlogger, während die Führungsgröße OUT D = 0 diesen stoppt, siehe auch EB 8389 "Ventildiagnose EXPERTplus".


Set local op. write protection

Der Befehl sperrt die Vor-Ort-Bedienung des Stellungsreglers (siehe auch Parameter LOCAL OP ENA des RES Blocks). Dieser Zustand wird im Code 3 durch ein blinkendes "FF" im Display des Stellungsreglers angezeigt.

Reset/Stop diagnosis

Diese Anwendung kann durch die Ausgabe unterschiedlicher Werte der Führungsgröße OUT D folgende Funktionen ausführen:

- Rücksetzen der Diagnose
- 2 Rücksetzen der Protokollierung
- 3 Stoppen der Diagnose
- 4 Starten/Freigeben der Diagnose

Discrete Input Function Block (DI1 FB + DI2 FB) 7.3.4

Der DI Function Block verarbeitet einzelne diskrete Sianale und stellt diese für andere Funktionsblöcke mit dem Parameter OUT D zur Verfügung. Der Stellungsregler verfügt über zwei DI Function Blocks, die nachfolgend beschriebene Anwendungsmöglichkeiten bieten. Die Einstellung der Anwendungsart erfolgt über die Parameter SELECT DI 1...2 des RES Blocks.

5 - 30 VDC (DI1)

Der Stellungsregler besitzt standardmäßig einen Kontakteingang zur Auswertung binärer Spannungssignale (Klemmen 87 und 88). Der DI1 FB wertet den Zustand des Kontaktes aus und stellt diesen über OUT D zur Verfügung.

Floating contact (DI2)

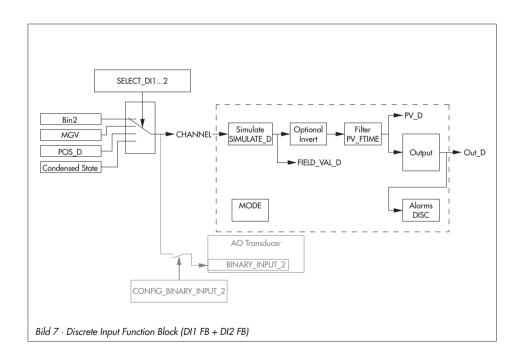
Der Stellungsregler besitzt optional einen Binäreingang zur Auswertung eines potentialfreien Kontaktes (Klemmen 85 und 86). Der DI2 FB wertet den Zustand des Kontaktes aus und stellt diesen über OUT D zur Verfügung.

Bei angeschlossenem Drucksensor (Leckagesensor) wird dessen Schaltzustand als Diganosemeldung im Parameter XD ERROR EXT des AO TRD signalisiert und in die Protokollierung übernommen. Hierzu muss im Parameter CONFIG BINARY INPUT2 die Option "Actively Open – Ext.Leak.Sens." oder "Actively Closed – Ext.Leak.Sens." angewählt werden. Außerdem wird der Schaltzustand des Binäreinagnas im Parameter BINARY INPUT2 des AO TRD ausgegeben.

Int. solenoid valve (DI1, DI2)

In dieser Einstellung wird der aktuelle Schaltzustand des optionalen internen Magnetventils abgefragt und über OUT_D zur Verfügung gestellt. Dabei entspricht der Wert 0 einem nicht geschalteten Magnetventil (U < 15 V DC) und der Wert 1 einem geschaltetem Magnetventil (U > 19 V DC).

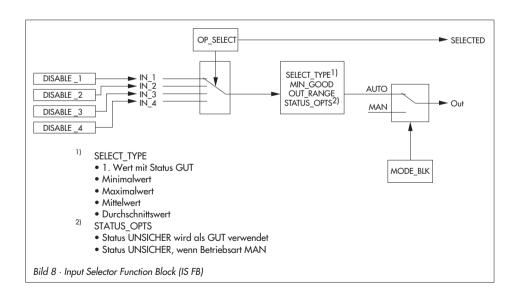
Discr. final valve position (DI1, DI2)


In dieser Einstellung wird die aktuelle diskrete Ventilstellung über OUT D zur Verfügung gestellt. Die Zuordnung der Werte ist dabei wie folgt:

- Gerät nicht initialisiert
- Ventil geschlossen
- 2 Ventil geöffnet
- 3 Ventil in Zwischenstellung

Condensed State (DI1, DI2)

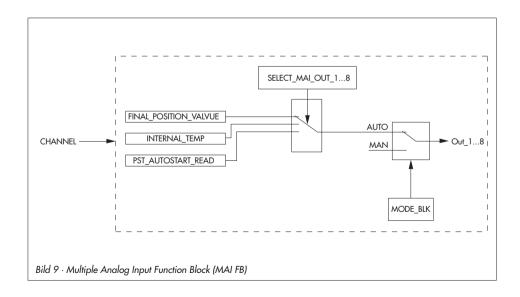
In dieser Einstellung wird der aktuelle Sammelstatus nach NAMUR Empfehlung NE107 über OUT D zur Verfügung gestellt. Dabei ist die Zuordnung der Statusmeldungen zu dem diskreten Wert wie folgt:


- 0 keine Meldung
- 1 Wartungsbedarf
- 2 Wartungsanforderung
- 3 Ausfall
- 7 Funktionskontrolle

7.3.5 Input Selector Function Block (IS FB)

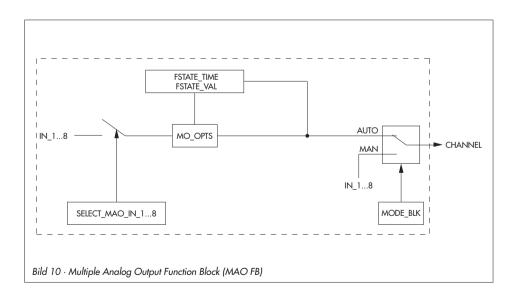
Der IS Function Block dient zur Bildung eines Ausgangssignals aus maximal vier Eingangssignalwerten. Mit dem Parameter SELECT_TYPE kann das Auswahlkriterium bestimmt werden, welcher der anstehenden Eingangswerte zum Ausgang durchgeschaltet wird. Folgende Möglichkeiten stehen zur Verfügung:

- 1. Wert mit Status GUT
- Minimalwert
- Maximalwert
- Mittelwert
- Durchschnittswert



7.3.6 Multiple Analog Input Function Block (MAI FB)

Der MAI Function Block stellt an seinen Ausgängen analoge Messgrößen des Stellungsreglers anderen analogen Funktionsblöcken zur Verfügung. Folgende Messgrößen können auf die acht Ausgänge ausgegeben werden:


- Aktuelle Ventilstellung (FINAL POSITION VALUE)
- Aktuelle Temperatur im Stellungsregler (INTERNAL TEMP)
- Zeit bis zum nächsten PST Auto Test (PST AUTOSTART READ)

Die Messgrößen der einzelnen Ausgänge können über die Parameter SELECT_MAI_ OUT 1...8 des RES Blocks zugewiesen werden.

7.3.7 Multiple Analog Output Function Block (MAO FB)

Der MAO Function Block ist derzeit noch ohne Funktion innerhalb des Stellungsreglers. Er ist zur Unterstützung/Verwendung von zukünftigen Diagnosefunktionen vorgesehen.

7.4 Weitere Parameter

7.4.1 Stale Counter

Der Stale Counter dient zur Beurteilung der "Qualität" einer über eine konfigurierte zyklische Verbindung (Publisher-Subscriber-Verbindung) erhaltenen Prozessvariablen.

Mittels dieser Verbindungen werden die zwischen verschiedenen Funktionsblöcken "verschalteten" Prozessvariablen übertragen. Zu diesem Zweck sendet der vorausgehende Block (Publisher) zu einem definierten Zeitpunkt die Prozessvariable auf den Bus. Der oder die nachfolgenden Blöcke (Subscriber) "hören" zu diesem Zeitpunkt auf den Bus. Die empfangenden Blöcke überwachen, ob zum konfigurierten Zeitpunkt ein gültiger Wert zur Verfügung steht. Ein Wert ist gültig, wenn er zum erwarteten Zeitpunkt mit einem Status "Good" zur Verfügung steht.

Der Stale Counter definiert, wieviel aufeinanderfolgende "schlechte" (stale) Werte akzeptiert werden, bis der Fault State Mechanismus des Blocks aktiviert wird.

Durch Setzen des Stale Counter auf 0 wird diese Überwachung deaktiviert.

Link Objekte 7.4.2

Link Objekte dienen zur Verschaltung von Funktionsblockein- und -ausgängen (konfigurierbare zyklische Verbindungen).

Für jeden Stellungsregler können 22 Link Objekte konfiguriert werden.

LAS Funktionalität 7.4.3

Die Anzahl der projektierbaren Verbindungen und Schedules ist auf die Anforderungen marktüblicher Prozessleitsysteme abgestimmt.

Als LAS kann der Stellungsregler das folgende Mengengerüst unterstützen:

- 2 Schedules
- 2 Subschedules
- 25 Sequences pro Subschedule
- 25 Elemente pro Sequence

Im Auslieferungszustand ist das Gerät als Basic Device konfiguriert.

7.5 **Parameterlisten**

Legende

In den nachfolgenden Tabellen steht der Parameterindex in Klammern nach dem Parameternamen.

Speicherklasse:	S	Statischer Parameter (static)
	D	Dynamischer Parameter (Dynamic)
	Ν	Nicht flüchtiger Parameter (Non volatile)
Zugriff:	r	Lesezugriff
	W	Schreibzugriff
Zugang:	0	Betriebsart "Außer Betrieb" O/S
	M	Betriebsart "Manueller Eingriff" MAN
	Α	Betriebsart "Automatik" AUTO
	CAS	Betriebsart "Kaskade"
	RCAS	Betriebsart "Externe Kaskade"
	ALL	O/M/A/CAS/RCAS
	NA	keine Auswertung
weitere Betriebsarten:	LO	Betriebsart "Lokale Überlagerung"
	ROUT	Betriebsart "Externer Ausgang"

Hinweis: Werte/Einstellungen in eckigen Klammern [] sind Defaultwerte (Werkseinstellung).

Resource Block (RES) 7.5.1

RFS: **ACK OPTIONS (38)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Automatische Alarmquittierung RES Block

- [UNDEFINED] · keine Auswahl
- DISC ALM · Schreibschutz wurde verändert
- BLOCK ALM · Blockglarm

Hinweis: Der Alarm wird an das Feldbus-Host-System gesendet, aber nicht von diesem quittiert.

RES: ALARM SUM (37)

Speicherklasse: S; Lese- und Schreibzugriff (r/w); Zugang O/A

Aktueller Status der Prozessalarme im RES Block

- DISC ALM Schreibschutz wurde verändert
- BLOCK ALM · Blockglarm

Hinweis: Zusätzlich können in dieser Parametergruppe die Prozessalarme deaktiviert werden.

RES: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

RES: BLOCK ALM (36)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

RES: **BLOCK ERR (6)**

Speicherklasse D; Lesezugriff (r)

Aktive Blockfehler → Code 48 S2

- SIMULATE ACTIVE · Simulation möglich, Simulation Enable gesetzt
- OUT OF SERVICE · Der Block befindet sich in der Betriebsart "Außer Betrieb" (O/S)
- LOST STATIC DATA · Datenverlust im EEPROM
- DEVICE NEEDS MAINTENANCE SOON · Wartung ist bald erforderlich. Diese Meldung löst einen Blockalarm (BLOCK ALM) des RES Blocks aus.

FF-Parameter

 DEVICE NEEDS MAINTENANCE NOW · Wartung ist jetzt erforderlich. Diese Meldung löst einen Blockalarm (BLOCK_ALM) des RES Blocks aus.

Hinweis: Die Zuordnung der Fehler- bzw. Diagnosemeldungen zum gewünschten Block wird mit den Parametern ERROR OPTION im Transducer Block getroffen.

RES: BUS ADDRESS (55)

Speicherklasse D; Lesezugriff (r)

Busadresse → Code 46

• 0 bis 255, [248]

RES: CLR FSTATE (30)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Deaktivierung des Sicherheitsverhaltens des AO FB

RES: CONDENSED STATE (58)

Speicherklasse D; Lesezugriff (r)

Anzeige des aktuellen Sammelstatus nach NE 107

RES: CONFIRM TIME (33)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Bestätigungszeit Ereignisbericht

Erhält das Gerät innerhalb dieser Zeitspanne keine Bestätigung, wird der Ereignisbericht erneut gesendet.

• [640000 ½ ms]

RES: CYCLE SEL (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Ausführmethode der Blöcke, vorgegeben vom Feldbus-Host-System

- [Scheduled] · planmäßig
- Block Execution · Blockausführung beendet
- Manuf Specific wird nicht ausgewertet

Hinweis: Die Auswahl der Ausführmethode erfolgt direkt im Feldbus-Host-System.

RES: CYCLE TYPE (19)

Speicherklasse S; Lesezugriff (r)

Vom Gerät unterstützte Blockausführmethoden

- Scheduled · planmäßig
- Block Execution · Blockausführung beendet

RES: DD RESOURCE (9)

Speicherklasse S; Lesezugriff (r)

Bezugsquelle für die Gerätebeschreibung im Gerät

Hinweis: Liegt keine Gerätebeschreibung im Gerät vor, wird "0" angegeben.

RES: **DD REV (13)**

Speicherklasse S; Lesezugriff (r)

Revisionsnummer der Gerätebeschreibung

RES: **DESCRIPTOR (46)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Frei verfügbares Textfeld zur Beschreibung der Applikation, gespeichert im Feldgerät

• max. 32 Zeichen, [ohne Text]

RES: **DEV REV (12)**

Speicherklasse S; Lesezugriff (r)

Revisionsnummer des Gerätes

RES: DEV TYPE (11)

Speicherklasse S; Lesezugriff (r)

Typ-Nummer Gerät (dezimales Zahlenformat)

hier: Typ 3730-5

RES: **DEVICE CERTIFICATION (45)**

Speicherklasse N; Lesezugriff (r)

Zertifizierung · Gibt an, ob für den Typ 3730-5 Ex-Zulassungen vorhanden sind.

RES: **DEVICE PRODUCT NUM (48)**

Speicherklasse N; Lesezugriff (r)

Hersteller-Artikelcode des Stellungsreglers

RES: **DEVICE SER NUM (44)**

Speicherklasse N; Lesezugriff (r)

Serien-Nummer des Stellungsreglers

RES: **DEVICE MESSAGE (47)**

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/A

Frei verfügbarer Text (Nachricht), gespeichert im Feldgerät

• max. 32 Zeichen, [ohne Text]

RES: **FAULT STATE (28)**

Speicherklasse N; Lesezugriff (r)

Status Sicherheitsverhalten AO FB

FEATURES (17) RES:

Speicherklasse S; Lesezugriff (r)

Vom Gerät unterstützte Zusatzfunktionen, siehe FEATURES_SEL

RES: FEATURES SEL (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Auswahl der vom Gerät unterstützten Zusatzfunktionen

- REPORTS · Das Feldbus-Host-System muss den Erhalt des Ereignisberichtes quittieren
- HARD W LOCK · Hardware Schreibschutz-Schalter wird ausgewertet
- FAULTSTATE · Sicherheitsverhalten kann ausgelöst werden (siehe SET_FSTATE/ CLR FSTATE)
- OUT READBACK · Aktuelle Ventilstellung wird im Parameter PV des AO FB ausgegeben (ansonsten im Parameter SP)

Hinweis: Soll der AO FB bei Aktivierung der Zwangsentlüftung/Auslösen des Magnetventils nicht in die Betriebsart MAN übergehen, ist diese Option zu deaktivieren.

RES: FIRMWARE REVISION (42)

Speicherklasse N; Lesezugriff (r)

Firmwareversion (Kommunikation/Regelung)

RES: FREE SPACE (24) · Parameter wird nicht unterstützt!

RES: FREE TIME (25) · Parameter wird nicht unterstützt!

RES: GRANT DENY (14)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang NA

Freigabe bzw. Einschränkung der Zugriffsberechtigung eines Feldbus-Host-Systems auf das Feldgerät

Hinweis: Dieser Parameter wird vom Typ 3730-5 nicht ausgewertet.

RES: HARD TYPES (15)

Speicherklasse S; Lesezugriff (r)

Ein- und Ausgangssignaltypen für das Gerät

- [Scalar Output] · skalierbare analoge Ausgangsgröße
- Scalar Input · skalierbare analoge Eingangsgröße
- Discrete Output · diskrete Ausgangsgröße
- Discrete Input · diskrete Eingangsgröße

RES: HW REVISION (43)

Speicherklasse S; Lesezugriff (r)

Hardware-Ausgabestand Elektronik/Mechanik

RES: ITK VER (41)

Speicherklasse S

Version des Interoperabilitäts-Testsystems, mit welchem dieses Gerät getestet wurde

RES: LIM NOTIFY (32)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Anzahl von Ereignisberichten, die gleichzeitig unquittiert vorliegen können

• 0 bis [40]

RES: LOCAL OP ENA (56)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/A

Sperren der lokalen Bedienung

RES: MANUFAC ID (10)

Speicherklasse S; Lesezugriff (r)

Hersteller-Identifikationsnummer

• [0 x 00E099] · SAMSON AG

RES: MAX NOTIFY (31)

Speicherklasse S; Lesezugriff (r)

Vom Gerät unterstützte Anzahl von Ereignisberichten, die gleichzeitig unguittiert vorliegen können

• [40]

RES: MEMORY SIZE (22) · Parameter wird nicht unterstützt!

RES: MIN CYCLE T (21)

Speicherklasse S; Lesezugriff (r)

Kürzeste Zykluszeit, die vom Gerät ausgeführt werden kann

• [8000 ½ ms]

RES: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/A

Betriebsart RES Block

- Target Mode (Gewünschte Betriebsart) → Code 48 S0
- Actual Mode (Aktuelle Betriebsart: nur Anzeige) → Code 48 S1
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart; nur Anzeige)
- AUTO · Automatikbetrieb: Die Ausführung der Funktionsblöcke (AO FB und PID FB) ist freigegeben
- O/S · Außer Betrieb: Die Ausführung der Funktionsblöcke (AO FB und PID FB) wird gestoppt. Diese Blöcke gehen in die Betriebsart O/S.

RES: NV CYCLE T (23)

Speicherklasse S; Lesezugriff (r)

Zeitintervall, in dem Gerätedaten in den nichtflüchtigen Speicher abgespeichert werden.

Hinweis: Nichtflüchtige Daten werden unmittelbar nach der Übertragung abgespeichert.

RES: READING DIRECTION (54)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Leserichtung → Code 2

Anzeige wird um 180° gedreht

- [Pneum. connection right] · Pneumatik-Anschluss rechts
- Pneum. connection left · Pneumatik-Anschluss links

RES: RESTART (16)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Rücksetzen des Gerätes

- RUN · Normaler Betriebszustand
- RESOURCE (Einstellung wird nicht unterstützt!)
- DEFAULTS · Die Gerätedaten und die Verschaltung der Funktionsblöcke werden auf die in der Spezifikation festgelegten Werte zurückgesetzt.
- PROCESSOR · Warmstart des Gerätes, Neustart des Prozessors

RES: RS STATE (7)

Speicherklasse D; Lesezugriff (r)

Aktueller Betriebszustand RES Block

- ONLINE · Normaler Betriebszustand, der Block befindet sich in der Betriebsart AUTO
- STANDBY · Der RES Block befindet sich in der Betriebsart O/S
- ONLINE LINKING · Die konfigurierten Verbindungen zwischen den Funktionsblöcken sind noch nicht aufgebaut.

RES: SELECT USAGE IO (57)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O

SELECT DI 1 · Informationen zur Verarbeitung im DI1 FB

- [5-30 VDC] · Zustand des Standard-Binärkontaktes BE1 (Klemmen +87/-88)
 - 0 Eingangsspannung Ue < 3 V DC
 - 1 Eingangsspannung Ue > 5 V DC
- INT.SOL.VLVE · Schaltzustand des internen Magnetventils (MGV)
 - 0 MGV nicht geschaltet (U < 15 V DC)</p>
 - 1 MGV geschaltet (U > 19 V DC)

- DIS.F.VLVE.POS · Aktuelle Ventilposition als diskrete Information
 - Gerät nicht initialisiert
 - aktuelle Ventilposition < x %
 - aktuelle Ventilposition > x %
 - Zwischenstellung

Hinweis: Grenzwerte für < x % bzw. > x % werden in FINAL POSITION VALUE LIMITS eingestellt [0.5; 99.5]

- COND.STATE · Aktueller Sammelstatus
 - 0 ok
 - Wartungsbedarf
 - 2 Wartungsanforderung
 - Ausfall
 - 7 Funktionskontrolle

SELECT DI 2 Informationen zur Verarbeitung im DI2 FB

- FI CONTACT · Zustand des Standard-Binärkontaktes BE2 (Klemmen +85/-86)
 - 0 potentialfreier Kontakt geöffnet
 - potentialfreier Kontakt geschlossen
- INT.SOL.VLVE · Schaltzustand des internen Magnetventils (MGV)
 - 0 MGV nicht geschaltet (U < 15 V DC)
 - MGV geschaltet (U > 19 V DC)
- DIS.F.VLVE.POS · Aktuelle Ventilposition als diskrete Information
 - Gerät nicht initialisiert
 - aktuelle Ventilposition < x %
 - aktuelle Ventilposition > x %
 - Zwischenstellung

Hinweis: Grenzwerte für < x % bzw. > x % werden in FINAL_POSITION_VALUE_LIMITS eingestellt [0.5; 99.5]

- COND STATE · Aktueller Sammelstatus
 - 0 ok
 - Wartungsbedarf
 - 2 Wartungsanforderung
 - Ausfall
 - **Funktionskontrolle**
- [COND.STATE + VST] · Aktueller Sammelstatus und Start des VST (Valve Stroke Test), vgl. Einstellung im Parameter VST MODE im AO TRD

SELECT DO 1 · Verwendungszweck des DO1 FB

- DO1 O/C · Auf/Zu-Anwendung
- [VST] · Start des VST (Valve Stroke Test), vgl. Einstellung im Parameter VST MODE im AO **TRD**
- RESET DIAG · Rücksetzen der Diagnose (Rücksetzen der Beobachter- und Testfunktionen, die Klassifizierung der Statusmeldungen und die Protokollierung bleiben erhalten)
- RESET LOGGER · Rücksetzen der Protokollierung
- F.-SAFE · Anfahren der Sicherheitsposition

- DLOG · Datenlogger (0 Start; 1 Stopp)
- LOG WRITE PR · Sperren der Vor-Ort-Bedienung (LOCAL OP ENA)
- DIAGNOSIS · Rücksetzen/Stopp der Diagnose
 - Rücksetzen der Diagnose
 - 2 Rücksetzen der Protokollierung
 - 3 Stoppen der Diagnose
 - 4 Freigeben/Starten der Diagnose

SELECT DO 2 · Verwendungszweck des DO2 FB

- VST · Start des VST (Valve Stroke Test), vgl. Einstellung im Parameter VST_MODE im AO TRD
- RESET DIAG · Rücksetzen der Diagnose (Rücksetzen der Beobachter- und Testfunktionen, die Klassifizierung der Statusmeldungen und die Protokollierung bleiben erhalten)
- RESET LOGGER · Rücksetzen der Protokollierung
- [F.-SAFE] · Anfahren der Sicherheitsposition
- DLOG · Datenlogger (0 Start; 1 Stopp)
- LOG WRITE PR · Sperren der Vor-Ort-Bedienung (LOCAL OP ENA)
- DIAGNOSIS · Rücksetzen/Stopp der Diganose
 - 1 Rücksetzen der Diagnose
 - 2 Rücksetzen der Protokollierung
 - 3 Stoppen der Diagnose
 - 4 Freigeben/Starten der Diagnose

SELECT_MAI_OUT_1 bis SELECT_MAI_OUT_8 · Messgröße, die über den Ausgang OUT_1...OUT_8 des MAI FB zur Verfügung gestellt wird

- VALVE POS · aktuelle Ventilstellung
- INTERNAL TEMP · aktuelle Temperatur im Stellungsregler
- PST AUTOSTART READ · Zeit bis zum n\u00e4chsten PST Auto Test

Werkseinstellungen:

[VALVE POS] bei SELECT_MAI_OUT_1, SELECT_MAI_OUT_4, SELECT_MAI_OUT_7 [INTERNAL_TEMP] bei SELECT_MAI_OUT_2, SELECT_MAI_OUT_5, SELECT_MAI_OUT_8 [NEXT_AUTOSTART_READ] bei SELECT_MAI_OUT_3, SELECT_MAI_OUT_6

SELECT_MAO_IN_1 bis SELECT_MAO_IN_8 · Signal, das über den Eingang IN_1...IN_8 des MAO FB verarbeitetet wird

- FLOW SENSOR · Durchflusssensor
- P1 · Druck p1
- P2 · Druck p₂
- PROC TEMP · Prozesstemperatur

Werkseinstellungen:

[FLOW SENSOR] bei SELECT MAO IN 1, SELECT MAO IN 5

[P1] bei SELECT MAO IN 2, SELECT MAO IN 6

[P2] bei SELECT_MAO_IN_3, SELECT_MAO_IN_7

[PROC TEMP] bei SELECT_MAO_IN_4, SELECT_MAO_IN_8

RES: SET FSTATE (29)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Aktivierung des Sicherheitsverhaltens im AO FB

RES: SHED RCAS (26)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Überwachungszeit zur Überprüfung der Verbindung zwischen dem Feldbus-Host-System und dem PID FB in der Betriebsart RCAS

Nach Ablauf der Überwachungszeit wechselt der PID FB von der Betriebsart RCAS in die im Parameter SHED_OPT ausgewählte Betriebsart.

• $[640000 \frac{1}{32} \text{ ms}]$

RES: SHED ROUT (27)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Überwachungszeit zur Überprüfung der Verbindung zwischen dem Feldbus-Host-System und dem PID FB im Betriebsmodus ROUT

Nach Ablauf der Überwachungszeit wechselt der PID FB von der Betriebsart ROUT in die im Parameter SHED OPT ausgewählte Betriebsart.

• [640000 ½ ms]

RES: ST REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert

RES: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parametern STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom RES Block weder geprüft noch verarbeitet.

RES: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

max. 32 Zeichen, Johne Text1

RES: TEST RW (8)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Dieser Parameter wird nur für Konformitätstests benötigt und ist im normalen Betrieb ohne Bedeutung.

FF-Parameter

RES: TEXT INPUT 1 (49) bis TEXT INPUT 5 (53)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/A

Frei verfügbare Textfelder

• max. 32 Zeichen, [ohne Text]

RES: UPDATE EVT (35)

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Daten geändert wurden, inklusive Änderungsdatum und -uhrzeit

RES: WRITE ALM (40)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/A

Status des Schreibschutz-Alarms

Hinweis: Der Alarm wird ausgelöst, wenn der Schreibschutz deaktiviert wird.

RES: WRITE LOCK (34)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Status des Schreibschutzschalters → Code 47

- LOCKED · Schreibschutz aktiviert
- NOT LOCKED · Schreibschutz deaktiviert

Hinweis: Mit Code 47 = ON ist der Schreibschutz aktiviert: Gerätedaten können über die FF-Kommunikation nur ausgelesen, aber nicht überschrieben werden.

Mit Code 47 = OFF ist der Schreibschutz deaktiviert: Gerätedaten können über die FF-Kommunikation überschrieben werden.

RES: WRITE PRI (39)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/A

Verhalten bei einem Schreibschutzalarm (Parameter WRITE ALM)

- [0] · Der Schreibschutzalarm wird nicht ausgewertet
- 1 · Keine Benachrichtiauna des Feldbus-Host-Systems bei einem Schreibschutz-Alarm
- 2 · Reserviert für Blockalarm
- 3 bis 7 · Der Schreibschutzalarm wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedrig, 7 = Priorität hoch
- 8 bis 15 · Der Schreibschutzalarm wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = Priorität hoch

Zuordnung Index – Parameter: RES Block

Index	Parameter
0	-
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	RS_STATE
8	TEST_RW
9	DD_RESOURCE
10	MANUFAC_ID
11	DEV_TYPE
12	DEV_REV
13	DD_REV
14	GRANT_DENY
15	HARD_TYPES
16	RESTART
17	FEATURES
18	FEATURES_SEL
19	CYCLE_TYPE
20	CYCLE_SEL
21	MIN_CYCLE_T
22	MEMORY_SIZE
23	NV_CYCLE_T
24	FREE_SPACE
25	FREE_TIME
26	SHED_RCAS
27	SHED_ROUT
28	FAULT_STATE
29	SET_FSTATE

Index	Parameter
30	CLR_FSTATE
31	MAX_NOTIFY
32	LIM_NOTIFY
33	CONFIRM_TIME
34	WRITE_LOCK
35	UPDATE_EVT
36	BLOCK_ALM
37	ALARM_SUM
38	ACK_OPTIONS
39	WRITE_PRI
40	WRITE_ALM
41	ITK_VER
42	FIRMWARE_REVISION
43	hw_revision
44	DEVICE_SER_NUM
45	DEVICE_CERTIFICATION
46	DESCRIPTOR
47	DEVICE_MESSAGE
48	DEVICE_PRODUCT_NUM
49	TEXT_INPUT_1
50	TEXT_INPUT_2
51	TEXT_INPUT_3
52	TEXT_INPUT_4
53	TEXT_INPUT_5
54	READING_DIRECTION
55	BUS_ADDRESS
56	LOCAL_OP_ENA
57	SELECT_USAGED_IO
58	CONDENSED_STATE

7.5.2 Advanced Positioner Transducer Block (AO TRD)

AO TRD: ACT FAIL ACTION (45)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Sicherheitsstellung (Stellung des Antriebs bei Hilfsenergieausfall, wird automatisch während der Initialisierung ermittelt)

- Air to open (in 0-%-Position)
- Air to close (in 100-%-Position)

AO TRD: ACT MAN ID (46)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Hersteller Antrieb

Kennzeichnet eindeutig den Hersteller des zum Stellungsregler zugehörigen Antriebs

AO TRD: ACT MODEL NUM (47)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Typ des zum Stellungsregler zugehörigen Antriebs

AO TRD: ACT SN (48)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Typenerkennung des zum Stellungsregler zugehörigen Antriebs

AO TRD: ADVANCED PV BASIC (0) · Parameter wird nicht unterstützt!

AO TRD: ALARM OPTIONS (109)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Alarmeinstellung zum Setzen eines Output Error im AO FB

- No (never) · Keine Alarmauslösung
- Local Override · Alarmauslösung, wenn AO TRD im Mode LOCAL OVERRIDE ist, d. h. das Gerät vor Ort im Mode SAFE gesetzt oder internes Magnetventil aktiv ist.
- MAN · Alarmauslösung, wenn AO TRD im Mode MAN ist.
- Block Alarm · Alarmauslösung, wenn AO TRD einen Block Error MAINTENANCE NOW hat.
- AO TRD fault state · Alarmauslösung, wenn das Sicherheitsverhalten aktiv ist.
- AO O/S set fault state · Alarmauslösung, wenn AO FB im Mode O/S ist, es wird FSTATE_VAL des AO FB angefahren.

AO TRD: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

AO TRD: ANALYSIS OPEN CLOSE (160)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Auf/Zu

Anzeige der Referenzauswertung und der letzen beiden Testauswertungen (siehe EB 8389 "Ventildiagnose EXPERTplus")

- TIME STAMP RISING/FALLING · Zeitstempel steigend/fallend
- BREAK AWAY TIME RISING/FALLING · Losbrechzeit steigend/fallend
- TRANSIT TIME RISING/FALLING · Laufzeit steigend/fallend
- VALVE END POSITION RISING/FALLING · Hubendstellung steigend/fallend

AO TRD: APPLICATION TYPE OC CONTROL (157)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Anwendungsart für das Ventil.

- Control Valve · Reaelventil
- Open/Close Valve · Auf/Zu-Ventil

AO TRD: AUTOMATIC TEST STATUS (210)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Status der laufenden Tests

- Stellsignal y Stationär (Test d1)
- Stellsignal y Hysterese (Test d2)
- Statische Kennlinie (Test d3)
- Teilhubtest PST (Test d4)

AO TRD: BINARY FUNCTION (123) · Parameter wird nicht unterstützt!

AO TRD: BINARY_FUNCTION_STATUS (124) · Parameter wird nicht unterstützt!

AO TRD: BINARY INPUT 2 (121)

Speicherklasse D; Lesezugriff (r)

Zustand DI2 FB

Der Wert der Ausgabe ist von CONFIG_BINARY_INPUT_2 abhängig.

AO TRD: BLOCK ALM (8)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

AO TRD: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktive Blockfehler → Code 48 S2

- SIMULATE ACTIVE · Simulation möglich, Simulation Enable gesetzt
- OUT OF SERVICE · Der Block befindet sich in der Betriebsart "Außer Betrieb" (O/S)
- LOST STATIC DATA · Datenverlust im EEPROM
- DEVICE NEEDS MAINTENANCE SOON · Wartung ist bald erforderlich. Diese Meldung löst einen Blockalarm (BLOCK ALM) des AO TRD Blocks aus.
- DEVICE NEEDS MAINTENANCE NOW · Wartung ist jetzt erforderlich. Diese Meldung löst einen Blockalarm (BLOCK_ALM) des AO TRD Blocks aus.

Hinweis: Die Zuordnung der Fehler- bzw. Diagnosemeldungen zum gewünschten Block wird mit den Parametern ERROR OPTION im Transducer Block getroffen.

AO TRD: BLOCKING POSITION (137)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Blockierstellung → Code 35

Abstand bis zur Zu-Stellung (0 %-Position)

Hinweis: Nur bei Initialisierungsmodus SUB notwendig.

AO TRD: CHARACTERIZATION (91)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Kennlinienauswahl → Code 20

- 1 Linear · Linear
- 2 Equal percentage · Gleichprozentia
- 3 Equal percentage reverse · Gleichprozentig invers
- 4 SAMSON butterfly linear · SAMSON-Stellklappe linear
- 5 SAMSON butterfly equal percentage · SAMSON-Stellklappe gleichprozentig
- 6 VETEC rotary linear · VETEC-Drehkegel linear
- 7 VETEC rotary equal percentage · VETEC-Drehkegel gleichprozentig
- 8 Segmented ball valve linear · Kugelsegment linear
- 9 Segmented ball valve percentage · Kugelsegment gleichprozentig
- 10 User defined · Benutzerdefiniert
 Definition über AO TRD (CUSTOM_CURVE_XY_FLOAT (63))

AO TRD: CLOSED POS DEADBAND (61)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Nullpunktgrenze [%] → Code 48 d5

AO TRD: CLOSED POS SHIFT (62)

Speicherklasse N; Lesezugriff (r)

Untere Endlagenverschiebung

AO TRD: CLOSING DIRECTION (134)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Schließrichtung → Code 34

Drehrichtung des Hebels für den Hubabgriff, durch die die Zu-Stellung (0 %-Position) des

Stellventils erreicht wird.

Hinweis: Nur bei Initialisierungsmodus SUB notwendig.

AO TRD: COLLECTION DIRECTORY (13) · Parameter wird nicht unterstützt!

AO TRD: CONFIG BINARY INPUT 2 (120)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Festlegung logischer Zustand DI2

- [NOT EVALUATED] · Nicht ausgewertet
- ACTIVELY OPEN · Aktiv offen
- ACTIVELY CLOSED · Aktiv geschlossen
- ACTIVELY OPEN LEAKAGE SENSOR · Aktiv offen Leckagesensor
- ACTIVELY CLOSED LEAKAGE SENSOR · Aktiv geschlossen Leckagesensor

Hinweis: Eine Auswertung erfolgt über den Parameter BINARY_INPUT_2. Die hier gewählten Einstellungen sind unabhängig vom DI2 TRD.

AO TRD: COUNTER INIT START (151)

Speicherklasse D; Lesezugriff (r)

Anzahl der durchgeführten Initialisierungen seit dem letzten Reset → Code 48 d4

AO TRD: CUSTOM_CURVE_DESCRIPTION (63) · Parameter wird nicht unterstützt!

AO TRD: CUSTOM CURVE XY (64) · Parameter wird nicht unterstützt!

AO TRD: CUSTOM CURVE XY FLOAT (65)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Eingabe der benutzerdefinierten Kennlinie

AO TRD: CYCLE CNTR (38)

Speicherklasse D; Lesezugriff (r)

Anzahl der gemessenen Bewegungszyklen seit dem letzten Rücksetzen

AO TRD: CYCLE CNTR LIM (76)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Maximale Zyklenzählergrenze für benutzerdefinierte Einstellung (Auswahl über Stangenabdichtung/Sonstige)

AO TRD: CYCLE COUNTER DEADBAND (66) · Parameter wird nicht unterstützt!

AO TRD: DEVIATION DEADBAND (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Toleranzband bezogen auf den Arbeitsbereich → Code 19

• 0.1 bis 10.0 %, [5.0 %]

AO TRD: DEVIATION MAX (115)

Speicherklasse D; Lesezugriff (r)

Max. aufgetretene Regeldifferenz des Stellungsreglers

AO TRD: DEVIATION_MIN (114)

Speicherklasse D; Lesezugriff (r)

Min. aufgetretene Regeldifferenz des Stellungsreglers

AO TRD: DEVIATION TIME (22)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Nachlaufzeit (Rücksetzkriterium für laufende Regelkreisüberwachung)

• 1 bis 240 s, [10 s]

Wenn die eingegebene Nachlaufzeit DEVIATION_TIME überschritten ist und die Regeldifferenz nicht innerhalb des eingegebenen Toleranzbandes DEVIATION_DEADBAND liegt, wird eine Regelkreisstörung gemeldet.

Hinweis: Der Wert DEVIATION_TIME wird während der Initialisierung aus der minimalen Laufzeit ermittelt.

AO TRD: DEVIATION_VALUE (23)

Speicherklasse D; Lesezugriff (r)

Regeldifferenz e → Code 39

AO TRD: DEVICE CHARACTERISTIC (125)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Spezifische Daten des Stellungsreglers

- MODEL · Bauart (Antrieb)
- ATTACHMENT · Anbau (Antrieb)
- BOOSTER · Volumenstromverstärker (Antrieb)
- ACTUATOR SIZE · Antriebswirkfläche
- SIGNAL PRESSURE LOWER VALUE Stelldruckbereich Anfang (Antrieb)
- SIGNAL PRESSURE UPPER VALUE · Stelldruckbereich Ende (Antrieb)
- SUPPLY PRESSURE · Versorgungsdruck (Antrieb)
- FLOW DIRECTION1 · Fließrichtung (Ventil)
- STUFFING BOX · Stangenabdichtung (Ventil)
- CYCLE CNTR LIM1
- SEALING EDGE · Leckageklasse (Ventil)
- PRESSURE BALANCING · Druckentlastung (Ventil)
- FLOW CHARACTERISTIC · Kennlinie Kegel (Ventil)
- NOM DIAMETER · Nennweitennorm (Ventil)
- NOM DIAMETER DN · Nennweite (Ventil)
- KVS_VALUE · K_{VS}-Wert (Ventil)
- KVS UNIT · Einheit K_{VS}-Wert
- SEAT DIAM VALVE · Sitzdurchmesser (Ventil)
- LENGTH UNITS · Einheit Länge
- PRESSURE UNIT · Einheit Druck

AO TRD: DEVICE INIT_STATE (132)

Speicherklasse D; Lesezugriff (r)

Gibt an, ob das Gerät initialisiert wurde.

AO TRD: DEVICE STATUS INIT (133)

Speicherklasse D; Lesezugriff (r)

Status der laufenden Initialisierung

AO TRD: DIAG LEVEL (145)

Speicherklasse D; Lesezugriff (r)

Vorhandener Diagnoselevel: EXPERTplus

AO TRD: DIAG REFLAUF INFO (211)

Speicherklasse S; Lesezugriff (r)

Status der laufenden Referenzläufe

FF-Parameter

AO TRD: DIAG RESET AFTER TIME (155)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Zeit bis zum nächsten einmaligen Rücksetzen der Diagnose

AO TRD: DIAG RESET AFTER TIMEOUT (156)

Speicherklasse S; Lesezugriff (r)

Verbleibenden Zeit bis zum nächsten einmaligen Rücksetzen der Diagnose

AO TRD: DIAGR_END_POS_TREND_X_EPT (208)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage

Kennlinie der unteren Endlage

AO TRD: DIAGR_END_POS_TREND_X_REF (209)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage

Referenzkennlinie der unteren Endlage

AO TRD: DIAGR STAT KENNL VENTILST1 (229) bis

DIAGR STAT KENNL VENTILST4 (232)

Speicherklasse D; Lesezugriff (r)

Testfunktion Statische Kennlinie

Messwerte Ventilstellung x der Kennlinie

AO TRD: DIAGR STAT KENNL W1 (233) bis

DIAGR STAT KENNL W4 (236)

Speicherklasse D; Lesezugriff (r)

Testfunktion Statische Kennlinie

Messwerte Führungsgröße w der Kennlinie

AO TRD: DIAGR_STELL_X_HYST_TEST_REF (224)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2)

Messwerte Ventilstellung x der Referenzkennlinie

AO TRD: DIAGR STELL X HYST TEST WH (226)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2)

Messwerte Ventistellung x der Kennlinie des letzten durchgeführten Tests

AO TRD: DIAGR STELL X STAT TEST REF (217)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1) Messwerte Ventilstellung x der Referenzkennlinie

AO TRD: DIAGR STELL X STAT TEST WH (219)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1)

Messwerte Ventistellung x der Kennlinie des letzten durchgeführten Tests

AO TRD: DIAGR STELL Y HYST TEST REF (223)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2) Messwerte Stellsignal y der Referenzkennlinie

AO TRD: DIAGR STELL Y HYST TEST WH (225)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2)

Messwerte Stellsignal y der Kennlinie des letzten durchgeführten Tests

AO TRD: DIAGR STELL Y HYSTERESE WH (200)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsignal y Hysterese

Mittelwerte der Stellsignaländerungen Dy Langzeitbetrachtung

AO TRD: DIAGR STELL Y STAT KURZ (192)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsianal v Stationär

Messwerte der Kennlinie Stellsignal y Kurzzeitbetrachtung

AO TRD: DIAGR STELL Y STAT LONG (191)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsignal y Stationär

Messwerte der Kennlinie Stellsignal y Langzeitbetrachtung

AO TRD: DIAGR STELL Y STAT SHORT (193)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsianal v Stationär

Anzeige der letzen 10 Messwerte des Stellsignal y (gehört zu DIAGR VALVE POS STAT SHORT)

AO TRD: DIAGR STELL Y STAT TEST REF (216)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1)

Messwerte Stellsignal y der Referenzkennlinie

AO TRD: DIAGR STELL Y STAT TEST WH (218)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1)

Messwerte Stellsignal y der Kennlinie des letzten durchgeführten Tests

AO TRD: DIAGR VALVE POS STAT SHORT (194)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsignal y Stationär

Anzeige der letzen 10 Messwerte der Ventilstellung x (gehört zu DIAGR STELL Y STAT SHORT)

AO TRD: DL CONFIG R (161)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger

Anzeige von:

- DL TESTINFORMATION · Status des Testlaufes
- DL MEASURING PERIOD · Dauer der Messung (100 * Abstastzeit)
- DL MAX PRETRIGGER TIME · Größte einstellbare Pretriggerzeit
- DL INTERNAL SOLENOID VALVE · Anzeige ob internes Magnetventil eingebaut ist
- DL PROGRESS · Fortschritt

AO TRD: DL_CONFIG_WR (162)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Datenlogger

Vorgabe von:

- DL_DATA_LOGGER_SELECT · Datenlogger permanent oder getriggert betreiben
- DL START TRIGGER CONFIGURATION · Startbedingung bei Triggerung
- DL SAMPLE RATE · Abtastzeit
- DL_START_VALUE · Triggerwertvorgabe
- DL TRIGGERBAND · Triggerband
- DL TRIGGER EDGE · Triggerflanke
- DL PRETRIGGER TIME · Aufnahmezeit vor dem Triggerereignis
- DL TRIGGER VIA CONDENSED STATE · Meldung des Sammelstatus zur Triggerung

AO TRD: DL HISTOGR E 1 (175) bis

DL_HISTOGR_E_4 (178)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger

Messwerte der Regeldifferenz e

AO TRD: DL HISTOGR E LONG (186)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger

Messwerte der Zeit t

AO TRD: DL HISTOGR E SCAN RATE (188)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Kurzzeithistogramm Regeldifferenz e

Abtastzeit für die Aufnahme der Regeldifferenzen

AO TRD: DL HISTOGR E SHORT (187)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Kurzzeithistogramm Regeldifferenz e

Anzeige von Messwerten und Mittelwert

AO TRD: DL HISTOGR TIME 1 (163) bis

DL HISTOGR TIME 4 (166)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenloager

Messwerte der Zeit t

AO TRD: DL HISTOGR VENTILST 1 (167) bis

DL HISTOGR VENTILST 4 (170)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenloager Messwerte der Ventilstellung x

AO TRD: DL HISTOGR W 1 (171) bis

DL HISTOGR W 4 (174)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenloager Messwerte des Sollwertes w

AO TRD: DL HISTOGR Y 1 (179) bis

DL HISTOGR Y 4 (182)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger Messwerte des Stellsignals y

AO TRD: DL HISTOGR Z LONG (189)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Langzeithistogramm Zyklenzähler z

Anzeige von Messwerten, Mittelwert, Anzahl der Messpunkte und dynamischen Belastungsfaktor

AO TRD: DL HISTOGR Z SHORT (190)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Kurzzeithistogramm Zyklenzähler z Anzeige von Messwerten und Mittelwert

AO TRD: ELAPSED HOURS METER (149)

Speicherklasse D; Lesezugriff (r)

Betriebsstundenzählers (BSZ)

- ELAPSED HOURS TOTAL · Gerät eingeschaltet
- ELAPSED_HOURS_IN_CLOSED_LOOP · Gerät in Regelung
- ELAPSED_HOURS_SWITCHED_ON_SINCE_INIT · Gerät eingeschaltet seit letzter Initialisierung
- ELAPSED_HOURS_IN_CLOSED_LOOP_SINCE_INIT · Gerät in Regelung seit letzter Initialisierung

AO TRD: END POS TREND REF DRIVE SIG (206)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage Anzeige der letzten 30 unteren Endlagen, Stellsignal y

AO TRD: END_POS_TREND_REF_DRIVE_SIG_REF (203)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage Referenzwert der unteren Endlage, Stellsignal y

AO TRD: END POS TREND REF TIME (205)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage Anzeige der letzten 30 unteren Endlagen, Zeitstempel

AO TRD: END POS TREND REF TIME REF (202)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage Referenzwert der unteren Endlage, Zeitstempel

AO TRD: END POS TREND REF VALUES (204)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend – Untere Endlage Anzeige der letzten 30 unteren Endlagen, Ventilstellung x

AO TRD: END POS TREND REF VALUES REF (201)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Enlagentrend - Untere Endlage Referenzwert der unteren Endlage, Ventilstellung x

AO TRD: ERROR OPTION DATA FAILURE (103)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Maskierung der Datenfehler

AO TRD: ERROR OPTION ENH DIAGNOSTIC 1 (104) bis

ERROR OPTION ENH DIAGNOSTIC 5 (108)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Maskierung von Diagnose Status- oder Fehlermeldungen

AO TRD: ERROR OPTION HW FAILURE (102)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Maskierung der Hardwarefehler

AO TRD: ERROR OPTION INIT FAILURE (100)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Maskierung der Initialisierungsfehler

AO TRD: ERROR OPTION OPERATION FAILURE (101)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Maskierung der Betriebsfehler

AO TRD: EVENT LOGGING 1 (152)

EVENT LOGGING 2 (153)

Speicherklasse D; Lesezugriff (r)

EVENT LOGGING 1: Anzeige der Protokollmeldungen 0 – 14 mit den dazugehörigen Zeiten EVENT LOGGING 2: Anzeige der Protokollmeldungen 15 – 29 mit den dazugehörigen Zeiten

AO TRD: FINAL POSITION VALUE (18)

Speicherklasse D; Lesezugriff (r)

Aktuelle Ventilstellung nach Berücksichtigung der Rückskalierung

AO TRD: FINAL POSITION VALUE D (33)

Speicherklasse D; Lesezugriff (r)

Aktuelle diskrete Ventilstellung nach Berücksichtigung der Bewegungsrichtung

AO TRD: FINAL POSITION VALUE LIMITS (144)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Begrenzung der Ventilposition (FINAL POSITION VALUE)

- FINAL POSITION VALUE LIMITS
- FINAL POSITION VALUE HIGH LIMIT
- FINAL POSITION VALUE LOW LIMIT

Diese Istgröße erhält der AO TRD direkt vom Ventil

AO TRD: FINAL VALUE (14)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Stellwert TRD

Der Wert FINAL VALUE enthält den vom vorgeschalteten AO FB erhaltenen Stellwert.

Skalierung über FINAL VALUE RANGE

AO TRD: FINAL VALUE CUTOFF HI (16)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Endlage bei w größer → Code 15

• 50 bis 100 %, [100 %]

Überschreitet die Führungsgröße den eingegebenen Wert, wird das Ventil in Richtung der Endlage, die 100 % der Stellgröße entspricht, gefahren. Dies geschieht durch vollständiges Be-bzw. Entlüften des Antriebs (entsprechend der Sicherheitsstellung).

Hinweis: Durch Eingabe von -2.5 % wird die Funktion deaktiviert.

ACHTUNG! Da bei dieser Funktion der Antrieb vollständig be- oder entlüftet wird, fährt das Stellventil in seine absoluten Endlagen. Einschränkungen der Funktion "Hubbereich" oder "Hubbegrenzung" gelten nicht. Falls dadurch unzulässig hohe Stellkräfte entstehen können, ist die Funktion zu deaktivieren.

AO TRD: FINAL VALUE CUTOFF HI ON (136)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Freigabe von Endlage bei w größer → Code 15

AO TRD: FINAL VALUE CUTOFF LO (17)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Endlage bei w kleiner → Code 14

• 0 bis 50 %, [1 %]

Unterschreitet die Führungsgröße den eingegebenen Wert, wird das Ventil in Richtung der Endlage, die 0 % der Stellgröße entspricht, gefahren. Dies geschieht durch vollständiges Bebzw. Entlüften des Antriebs (entsprechend der Sicherheitsstellung).

Hinweis: Durch Eingabe von 0 % wird die Funktion deaktiviert.

ACHTUNG! Da bei dieser Funktion der Antrieb vollständig be- oder entlüftet wird, fährt das Stellventil in seine absoluten Endlagen. Einschränkungen der Funktion "Hubbereich" oder "Hubbegrenzung" gelten nicht. Falls dadurch unzulässig hohe Stellkräfte entstehen können, ist die Funktion zu deaktivieren.

AO TRD: FINAL VALUE CUTOFF LO ON (135)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Freigabe von Endlage bei w kleiner → Code 14

AO TRD: FINAL VALUE D (32)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Diskrete Führungsgröße von vorgeschalteten DO1 FB

AO TRD: FINAL VALUE RANGE (15)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Hub-/Drehwinkelbereich

- FINAL VALUE RANGE EU 100 · Hub-/Drehwinkelbereich Ende → Code 9
- FINAL VALUE RANGE EU 0 · Hub-/Drehwinkelbereich Anfang → Code 8
- FINAL VALUE RANGE UNITS INDEX · Einheit
- FINAL VALUE RANGE DECIMAL · Dezimalpunkt

Hinweis: Den Wert FINAL VALUE erhält der AO TRD direkt vom vorgeschalteten AO FB. Der Arbeitsbereich FINAL VALUE RANGE wird gegen TRANS PIN POS überprüft. Wird TRANS PIN POS geändert, wird überprüft, ob die Einstellung und Einheit zum aktuellen Arbeitsbereich FINAL VALUE RANGE passt. Ist dies nicht der Fall, wird der Arbeitsbereich FINAL VALUE RANGE auf 0 bis 100 % gesetzt.

AO TRD: FLOAT STR (297) · Parameter wird nicht unterstützt!

AO TRD: FRICTION (68)

Speicherklasse N; Lesezugriff (r)

Ermittelte Reibung in Prozent

AO TRD: FRICTION LIMITS (301)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Obere/untere Reibungsgrenzen

- FRICTION LIMIT UP, 0 bis 1000 % [200 %]
- FRICTION LIMIT DOWN, 0 bis 1000 % [50 %]

AO TRD: FRICTION UNITS (67) · Parameter wird nicht unterstützt!

AO TRD: FST BREAKOUT TIME (86)

Speicherklasse S; Lesezugriff (r)

Ermittelte Losbrechzeit des zuletzt durchgeführten Vollhubtests (FST)

AO TRD: FST BREAKOUT TIMEOUT (87)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Vollhubtests (FST): Maximale Losbrechzeit

• 0.0 ... 25000.0 s, [7.5 s]

AO TRD: FST COMPLETION TIMEOUT (90)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Vollhubtests (FST): Maximale Testdauer (Anwendervorgabe)

• 0.0 ... 25000.0 s, [30.0 s]

AO TRD: FST_DIAGR_E1 (289) bis

FST DIAGR E4 (292)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte der Regeldifferenz e

AO TRD: FST DIAGR TIME1 (277) bis

FST DIAGR TIME4 (280)

Speicherklasse D; Lesezugriff (r)

Testfunktion Vollhubtest (FST): Messwerte der Zeit t

AO TRD: FST_DIAGR_W1 (285) bis

FST DIAGR W4 (288)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte des Sollwertes w

AO TRD: FST_DIAGR_X1 (281) bis

FST DIAGR X4 (284)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte der Ventilstellung x

AO TRD: FST DIAGR Y1 (293) bis

FST DIAGR Y4 (296)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte des Stellsignals y

AO TRD: FST DISPLAY (270)

Speicherklasse D; Lesezugriff (r)

Informationen zum Vollhubtest (FST)

- FST PROGRESS FLAG · Aktuelle Fortschrittsanzeige
- FST_STATUS_PST · Status (erfolgreich/nicht erfolgreich)
- FST NUMBERS OF TESTS · Anzahl der durchgeführten Vollhubests (FST)
- FST SETTINGS MIN SCAN RATE · Empfohlene Mindestabtastzeit
- FST SETTINGS DURATION TEST · Vorraussichtliche Testdauer

AO TRD: FST MEAS DATA1 (271)

FST MEAS DATA2 (272)

FST MEAS DATA3 (273)

Speicherklasse D; Lesezugriff (r)

Messdatenauswertung des Vollhubtests (FST)

FST MEAS DATA1 (271) = aktueller Test

FST MEAS DATA2 (272) = 1. gespeicherte Messdatenauswertung

FST MEAS DATA3 (273) = 2. gespeicherte Messdatenauswertung

- FST TIME STAMP · Zeitstempel für diesen Test
- FST OVERSHOOT RISING · Überschwinger (steigend)
- FST DEAD TIME RISING · Totzeit (steigend)
- FST T63 RISING · T63 (steigend)
- FST T98 RISING · T98 (steigend)
- FST RISE TI RISING · Anregelzeit (steigend)
- FST SETTL TI RISING · Ausreaelzeit (steigend)
- FST OVERSHOOT FALLING · Überschwinger (fallend)
- FST DEAD TI FALLING · Totzeit (fallend)
- FST T68 FALLING · T63 (fallend)
- FST T98 FALLING · T98 (fallend)
- FST RISE T FALLING · Anregelzeit (fallend)
- FST_SETTL_T_FALLING · Ausregelzeit (fallend)

AO TRD: FST_RAMP_RATE (88) · Parameter wird nicht unterstützt!

AO TRD: FST SETTINGS (269)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Einstellungen des Vollhubtests (FST)

- FST TOL LIMIT RESPONSE · Toleranzgrenze für die Sprungstart-/endwerte
- FST ACTIV RAMP FUNCTION · Aktivierung der Rampenfunktion
- FST RAMP TIME RISING · Rampenzeit (steigend)

FF-Parameter

- FST RAMP TIME FALLING · Rampenzeit (fallend)
- FST_SETTLING_TIME · Beruhigungszeit vor Testbeginn
- FST_SCAN_RATE · Abtastzeit

AO TRD: FST STRK TRAV TIMEOUT (89)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Vollhubtests (FST): Erlaubte Zeit bis Sprungendwert

• 0.0 ... 25000.0 s, [15.0 s]

AO TRD: FST TEST INFO (302)

Speicherklasse D; Lesezugriff (r)

Aktueller Status des Vollhubtests (FST)

AO TRD: FST_TEST_STAT1 (274) bis

FST TEST STAT3 (276)

Speicherklasse D; Lesezugriff (r)

Status des Vollhubtests (FST)

FST TEST STAT1 (274) = aktueller Test

FST TEST STAT2 (275) = 1. gespeicherter Status

FST TEST STAT3 (276) = 2. gespeicherter Status

- FST_NO_TEST_AVAILABLE · Kein Test vorhanden
- FST MAX TIME EXCEEDED · Max. Testzeit überschritten
- FST TEST MANUA CANCEL Test manuell abgebrochen
- FST OUT OF MEMORY · Messdatenspeicher voll
- FST ABO INT SOL VALVE · Abbruch Int. MGV/Zwangsentlüftung
- FST PRESSURE FRICTION · Abbruch Zuluftdruck/Reibung
- FST CURRENT TOO LOW · Test abgebrochen Strom zuniedrig

AO TRD: HIS TEMPERATURE (148)

Speicherklasse D; Lesezugriff (r)

Anzeige in Stunden (je angefangen Stunde)

- HIS_T_ZEIT_MIN_TEMPERATURE · Betriebsstundenzähler: niedrigste Temperatur im Stellungsregler
- HIS_T_ZEIT_MAX_TEMPERATURE · Betriebsstundenzähler: höchste Temperatur im Stellungsregler
- TEMP PERIOD TIME LOW · Verweildauer der Temperatur unterhalb von –40 °C (–40 °F)
- TEMP PERIOD TIME HIGH · Verweildauer der Temperatur oberhalb von +80 °C (+176 °F)

AO TRD: HISTOGR X LONG (183)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Langzeithistogramm Ventilstellung x: Messwerte, Mittelwert, Anzahl der Messpunkte und Betrachtungsdauer

AO TRD: HISTOGR X SCAN RATE (185)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Kurzzeithistogramm Ventilstellung x

Messwerten und Mittelwert

AO TRD: HISTOGR X SHORT (184)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Kurzzeithistogramm Ventilstellung x Abtastzeit für die Aufnahme der Ventilstellungen

AO TRD: HYST SHORT DIFF Y (198)

Speicherklasse D: Lesezuariff (r)

Beobachterfunktion Diagramm Stellsignal y Hysterese

letzte 10 Messwerte der Stellsignaldifferenz (Δy) (zugehörig zu HYST VALVE POS)

AO TRD: HYST VALVE POS (199)

Speicherklasse D: Lesezuariff (r)

Beobachterfunktion Diagramm Stellsignal y Hysterese:

letze 10 Messwerte der Ventilstellung x (zugehörig zu HYST SHORT DIFF Y)

AO TRD: HYSTERESIS (69) · Parameter wird nicht unterstützt!

AO TRD: IDENT OPTIONS (118)

Speicherklasse D; Lesezugriff (r)

Optionen (Zusatzausstattung)

- Internes Magnetventil
- 2 Binäreingang 1
- 3 Binäreingang 2
- 4 Induktiver Grenzkontakt
- 5 Leckagesensor
- 6 Externer Positionssensor

AO TRD: INIT METHOD (128)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Initialisierungsart → Code 6

- Maximalbereich MAX
- 1 Nennbereich NOM
- 2 Manuell aewählter Bereich MAN
- 3 Ersatzabgleich SUB
- 4 Nullpunktabgleich

AO TRD: INIT WITH REF TEST (129)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Referenzläufe der Diagnose mit der Initialisierung aufnehmen

- Yes
- [No]

AO TRD: INTERNAL TEMP (96)

Speicherklasse D; Lesezugriff (r)

Aktuelle Temperatur im Stellungsregler

AO TRD: INTERNAL TEMP MAX (98)

Speicherklasse D; Lesezugriff (r)

Höchste erfasste Temperatur im Stellungsregler

AO TRD: INTERNAL TEMP MIN (97)

Speicherklasse D; Lesezugriff (r)

Niedrigste erfasste Temperatur im Stellungsregler

AO TRD: INTERNAL TEMP UNITS (99)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Einheit der Temperatur im Stellungsregler

- [°C]
- °F

AO TRD: KP STEP (140)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Proportionalitätsfaktor KP (Stufe) \rightarrow Code 17

Hinweis: Über FF kann dieser Parameter nur gelesen werden, der Wert wird bei der Initialisierung ermittelt.

AO TRD: LIMIT TIME TRAVEL ANALYSIS (159)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Auf/Zu: Hubgrenze für die Differenz zwischen Referenzwert und aktuell aufgenommenen Wert

Sie bestimmt, ab welchem Wert eine Meldung generiert wird.

• 0.0 ... 100.0 %, [0.3 %]

AO TRD: LIMIT VALUE TIME ANALYSIS (158)

Speicherklasse S: Lese- und Schreibzugriff (r/w): Zugang O/M/A

Beobachterfunktion Auf/Zu: Zeitgrenze für die Differenz zwischen Referenzwert und aktuell aufgenommenen Wert

Sie bestimmt, ab welchem Wert eine Meldung generiert wird.

• 0.0 ... 30.0 s, [0.6 s]

AO TRD: LOGGING MGV (116)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Protokollierung des int. Magnetventils aktiv (Error Control)

- [Yes]
- No

AO TRD: LS ALARM INFORMATION (306)

Speicherklasse D; Lesezugriff (r)

Leckagesensor: Alarminformationen

AO TRD: LS ALARM LIMIT 1 (307) bis

LS ALARM LIMIT 3 (309)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Leckagesensor

LS ALARM LIMIT 1 (307) = 1. Alarmgrenze in dB

LS ALARM LIMIT 2 (308) = 2. Alarmgrenze in dB

LS ALARM LIMIT 3 (309) = 3. Alarmgrenze in dB

AO TRD: LS ALARM RELEASE (304)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Leckagesensor: Alarmauslösung

- No alarm release · Keine Alarmauslösung
- Average level at tight-closing · Gemittelter Pegelwert im Dichtschließen
- [Average of current/last tight-closing] · Mittelwert des aktuellen/letzten Dichschließens
- Moving average short-term histogram · Gleitender Mittelwert aus dem Kurzzeithistogramm
- Moving average long-term histogram · Gleitender Mittelwert aus dem Langzeithistogramm

FF-Parameter

AO TRD: LS LEAKAGE LEVEL (303)

Speicherklasse D; Lesezugriff (r)

Leckagesensor: Sensorpegel in dB

AO TRD: LS SELECT ALARM LIMITS (305)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Leckagesensor: Alarmgrenzen

- [Factory setting (reference test)] · Werksvorgabe (Referenztest)
- Alarm limit of repetition test · Alarmgrenzen aus Wiederholungstest
- User defined alarm limit · Benutzerdefinierte Alarmarenzen

AO TRD: LS_TEST_INFORMATION (310)

Speicherklasse D; Lesezugriff (r)

Leckagesensor: Teststatus

AO TRD: MIN_CLEARANCE_NEW_LOGGING_MGV (117)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Zeitlicher Mindestabstand bis zur erneuten Protokollierung des int. Magnetventils (Error Control)

AO TRD: MODE BLK (5)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Betriebsart

- Target Mode (Gewünschte Betriebsart) → Code 48 t0
- Actual Mode (Aktuelle Betriebsart; nur Anzeige) → Code 48 t1
- Permitted Mode (Erlaubte Betriebsart)
- Normal Mode (Normale Betriebsart; nur Anzeige)
- AUTO · Automatikbetrieb: Aus dem vom AO FB erhaltenen Stellwert wird ein Positionswert berechnet und das Stellventil entsprechend positioniert.
- O/S · Außer Betrieb: Der vom AO FB erhaltene Stellwert wird nicht verwendet. Das Stellventil f\u00e4hrt in die mit ACT_FAIL_ACTION festgelegte mechanische Sicherheitsstellung. Das Ausl\u00f6sen der Zwangsentl\u00fcftung f\u00fchrt rebenfalls zum Wechsel in die Betriebsart O/S.
- MAN · Handbetrieb: Der Stellwert (FINAL_VALUE) kann von Hand vorgegeben werden (Anzeige am Stellungsregler: G und)
- LO · Lokale Überlagerung: Wird der Regler vor Ort in den Handbetrieb (MAN) geschaltet, so wechselt der AO TRD in die Betriebsart LO.

AO TRD: NO OF ZERO POINT ADJ (150)

Speicherklasse D; Lesezugriff (r)

Anzahl der Nullpunktabgleiche seit der letzten Initialisierung → Code 48 d3

AO TRD: OPTI SUB INIT (131)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Optimierung der Randbereiche des Ersatzabgleiches

- ON
- [OFF]

AO TRD: POS ALERT HI (24)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Benutzerdefinierte obere Grenze, die bei Überschreitung, das High-Limit-Bit in WORKING POS setzt

• [100 %]

AO TRD: POS ALERT LO (25)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Benutzerdefinierte untere Grenze, die bei Unterschreitung, das Low-Limit-Bit in WORKING POS setzt

• [0 %]

AO TRD: POS DEADBAND (70) · Parameter wird nicht unterstützt!

AO TRD: POS FEATURES (44)

Speicherklasse D; Lesezugriff (r)

Vom AO TRD unterstütze Parametergruppen

AO TRD: POSITIONER MODEL (122)

Speicherklasse D; Lesezugriff (r)

Stellungsreglertyp

AO TRD: PRESSURE LIMIT (138)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Druckgrenze → Code 16

- [OFF]
- 3.7 bar
- 2.4 bar
- 1.4 bar

AO TRD: PROTOKOLL BSZ START (154)

Speicherklasse D; Lesezugriff (r)

Anzeige der Zeit seit der ersten Inbetriebnahme (Betriebsstundenzähler)

AO TRD: PST AUTOSTART READ (238)

Speicherklasse D; Lesezugriff (r); Zugang O/M/A

Zeit bis zum nächsten automatisch durchgeführten Teilhubtest (Auto PST)

AO TRD: PST BREAKOUT TIME (77)

Speicherklasse N; Lesezugriff (r)

Ermittelte Losbrechzeit des zuletzt durchaeführtem Teilhubtest (PST)

AO TRD: PST BREAKOUT TIMEOUT (78)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Teilhubtests (PST): Max. Losbrechzeit

AO TRD: PST CANCEL COND (241)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingungen des Teilhubtests (PST)

- PST ACT X CONTROL · Aktivierung der x-Abbruchbedingung
- PST X CONTROL VALUE · x-Überwachungswert
- PST ACT DELTA Y MONI · Aktivierung der ∆y-Abbruchbedingung
- PST DELTA Y MONI VAL · Δy-Überwachungswert
- PST TOL BAND CONTROL · Aktivierung PST-Toleranzbandüberwachung
- PST TOL BAND · PST-Toleranzband

AO TRD: PST COMPLETION TIMEOUT (85)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Teilhubtests (PST): Max. Testdauer (Anwendervorgabe)

AO TRD: PST DIAGR E1 (261) bis

PST DIAGR_E4 (264)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte der Regeldifferenz e

AO TRD: PST DIAGR TIME1 (249) bis

PST DIAGR TIME4 (252)

Speicherklasse D; Lesezugriff (r)

Testfunktion Teilhubtest (PST): Messwerte der Zeit t

AO TRD: PST DIAGR W1 (257) bis

PST DIAGR W4 (260)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte des Sollwertes w

AO TRD: PST DIAGR X1 (253) bis

PST DIAGR X4 (256)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte der Ventilstellung x

AO TRD: PST DIAGR Y1 (265) bis

PST DIAGR Y4 (268)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Datenlogger: Messwerte des Stellsignals y

AO TRD: PST DISPLAY (242)

Speicherklasse D; Lesezugriff (r)

Informationen zum Teilhubtest (PST)

- PST PROGRESS FLAG · Aktuelle Fortschrittsanzeige des PST
- PST MIN VALUE Y CONTROL · Wiederholungswert ∆y-Überwachung
- PST DELTA Y MONI REF VAL · Referenzwert ∆v-Überwachung
- PST STATUS PST · Status (erfolgreich/nicht erfolgreich)
- PST NUMBERS OF TESTS · Anzahl der durchgeführten Teilhubtests (PST)
- PST RECOMMENDED SCAN RATE · Empfohlene Mindestabtastzeit
- PST DURATION OF TEST · Vorraussichtliche Testdauer
- PST TESTMODE ACTUAL · Aktueller PST-Mode

AO TRD: PST INITIAL START TIME (79) · Parameter wird nicht unterstützt!

AO TRD: PST INTERVAL (80)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Zeit zum automatischen Starten des Teilhubtests (PST TESTMODE TARGET muss auf "PST Auto" gestellt sein)

AO TRD: PST MEAS DATA1 (243) bis

PST MEAS DATA3 (245)

Speicherklasse D; Lesezugriff (r)

Messdatenauswertung des Teilhubtests (PST)

PST MEAS DATA1 (271) = aktueller Test

PST_MEAS_DATA2 (272) = 1. gespeicherte Messdatenauswertung PST_MEAS_DATA3 (273) = 2. gespeicherte Messdatenauswertung

- PST_TIME_STAMP · Zeitstempel für diesen Test
- PST OVERSHOOT RISING Überschwinger (steigend)
- PST DEAD TIME RISING · Totzeit (steigend)
- PST T63 RISING · T63 (steigend)

- PST_T98_RISING · T98 (steigend)
- PST RISE TI RISING · Anregelzeit (steigend)
- PST SETTL TI RISING · Ausregelzeit (steigend)
- PST OVERSHOOT FALLING · Überschwinger (fallend)
- PST DEAD TI FALLING · Totzeit (fallend)
- PST T68 FALLING · T63 (fallend)
- PST T98 FALLING · T98 (fallend)
- PST RISE T FALLING · Anregelzeit (fallend)
- PST SETTL T FALLING · Ausregelzeit (fallend)
- PST DELTA Y · Δy-Überwachung (Wiederholungswert)

AO TRD: PST OPTIONS (81) · Parameter wird nicht unterstützt!

AO TRD: PST RAMP RATE (82) · Parameter wird nicht unterstützt!

AO TRD: PST SETTINGS (240)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Einstellungen des Teilhubtests (PST)

- PST STEP START · Startwert zur Durchführung der Sprungantwort
- PST STEP END · Endwert zur Durchführung der Sprungantwort
- PST_LIMIT_STEP_RESPONSE · Toleranzarenze für die Sprungstart-/endwerte
- PST ACTIVATION RAMP FUNCTION · Aktivierung der Rampenfunktion
- PST RAMP TIME RISING · Rampenzeit (steigend)
- PST_RAMP_TIME_FALLING · Rampenzeit (fallend)
- PST SETTLING TIME BEFORE TEST · Beruhigungszeit vor Testbeginn
- PST SCAN RATE · Abtastzeit
- PST STEP RESPONSE · Anzahl der Sprünge

AO TRD: PST STRK TRAV (83)

Speicherklasse S; Lesezugriff (r)

Sprunghöhe beim Teilhubtest (PST)

AO TRD: PST STRK TRAV TIMEOUT (84)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Abbruchbedingung des Teilhubtest (PST): Erlaubte Zeit bis Sprungendwert

AO TRD: PST TEST INFO (239)

Speicherklasse D; Lesezugriff (r)

Aktueller Status des Teilhubtests (PST)

AO TRD: PST_TEST_STAT1 (246) bis

PST TEST STAT3 (248)

Speicherklasse D; Lesezugriff (r)

Status des Teilhubtests (PST)

PST TEST STAT1 (246) = aktueller Test

PST TEST STAT2 (247) = 1. gespeicherter Status

PST TEST STAT3 (248) = 2. gespeicherter Status

- PST TEST START · Teststart
- PST NO TEST AVAILABLE · Kein Test vorhanden
- PST X CANCEL · x-Abbruch
- PST Y CANCEL · ∆y-Abbruch
- PST TOL BAND EXCEEDED · Toleranzband überschritten
- PST_MAX_TIME_EXCEEDED · Max. Testzeit überschritten
- PST_TEST_MANUA_CANCEL · Test manuell abgebrochen
- PST OUT OF MEMORY · Messdatenspeicher voll
- PST_ABO_INT_SOL_VALVE · Int. MGV/Zwangsentlüftung Abbruch
- PST_PRESSURE_FRICTION · Zuluftdruck/Reibung Abbruch
- PST_W_STEP_TOO_HIGH · Führungsgrößendifferenz Sprungstart zu hoch
- PST_ABORT_REF_CHANGED · Test abgebrochen Führungsgröße zu hoch
- PST CURRENT TOO LOW · Test abgebrochen Strom zuniedrig

AO TRD: PST TESTMODE TARGET (237)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Gewünschter Testmodus des Teilhubtests (PST)

- [PST Man]
- PST Auto

AO TRD: RATED TRAVEL (26)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Nennbereich → Code 5

• 0 bis 255.9 mm, [15.0 mm]

Hinweis: Die Einheit [mm] bzw. [grad] ist abhängig vom Parameter VALVE TYPE.

AO TRD: READBACK SELECT (40)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Auswahl der aktuellen oder tatsächlichen Ventilstellung für den Parameter READBACK

- [FINAL POSITION VALUE]
- WORKING POS

AO TRD: REFLAUF VOLLST (212)

Speicherklasse D; Lesezugriff (r)

Referenzläufe vollständig durchgeführt.

AO TRD: RESET STATUS MESSAGE DIAG (147)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Auswahl von Befehlen zum Rücksetzen

- einzelner Fehlermeldungen
- von Trends, Histogrammen, Diagrammen der Testfunktionen
- der PST/FST-Parameter und Messwerte
- der Protokollierung
- aller aufgenommen Diagnosedaten (Ausnahme Referenzkurven und Protokollierung)

AO TRD: SELECT EMERGENCY MODE (139)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Verhalten bei Ausfall/Defekt des Wegaufnehmers

- Steuerung (Open Loop Control) durch hinterlegte Kennline
- Fahren in vorgegebene Sicherheitsstellung

AO TRD: SELECT OPTIONS (119)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Anzeige/Änderung der nicht automatisch erkannten, eingebauten Optionen (IDENT_LIMIT_SWITCHES, IDENT_EXT_LEAKAGE_SENSOR, IDENT LEAKAGE DETECTION, IDENT_EXT_POS_SENSOR)

AO TRD: SET FAIL SAFE POS (126)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Setzen der Sicherheitsstellung

- NOT ACTIVE · nicht aktiv
- SET FAIL-SAFE POSITION · Sicherheitsstellung aktivieren
- CLEAR FAIL-SAFE POSITION Sicherheitsstellung deaktivieren

Hinweis: Die Sicherheitsstellung wird am Stellungsregler durch ein blinkendes "S" angezeigt.

AO TRD: SIGNAL ACTION (39)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Bewegungsrichtung der Führungsgröße w zum Hub/Drehwinkel x → Code 7

AO TRD: SIMULATION ENABLE (111)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Freigabe der Simulation von Statusmeldungen

AO TRD: SIMULATION MESSAGE (110)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Auswahl der zu simulierenden Statusmeldung

Hinweis: Simulation muss vor der Benutzung freigeschaltet werden -> SIMULATION ENABLE.

AO TRD: ST REV (1)

Speicherklasse S; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Black inkrementiert.

AO TRD: START STOP ALL FUNCTION (146)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Ausführen/Beenden der verschiedenen EXPERTplus Testläufe

- Referenzläufe (d1, d2)
- Datenlogger
- Testläufe (d1 bis d6 und d9)

AO TRD: STAT KENNL R (227)

Speicherklasse D; Lesezugriff (r)

Testfunktion Statische Kennlinie: Anzeige

- STAT KENNL R TEST INFO · Aktueller Status des Tests
- STAT KENNL R STEP HEIGTH · Sprunghöhe
- STAT KENNL R MIN DEAD BAND · Ermittelte kleinste tote Zone
- STAT KENNL R AVERAGE DEAD BAND · Ermittelte durchschnittliche tote Zone
- STAT KENNL R MAX DEAD BAND · Ermittelte größte tote Zone
- STAT KENNL R PROGRESS FLAG · Aktuelle Fortschrittsanzeige des Tests

AO TRD: STAT KENNL W (228)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Testfunktion Statische Kennlinie: Vorgabe

- STAT_KENNL_W_START_VALUE · Startwert Ventilstellung x
- STAT_KENNL_W_END_VALUE · Endwert Ventilstellung x
- STAT_KENNL_W_DELAY_TIME · Wartezeit nach Sprung
- STAT_KENNL_W_TURN_BACK_VALUES · Anzahl der Messwerte, die bis zur Umkehr aufgenommen werden

AO TRD: STOP HI (27)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Hub-/Drehwinkelbegrenzung oben → Code 11

• 50 ... 120 %, [100 %]

Hinweis: Die Kennlinie wird nicht angepasst. Die Dichtschließfunktion hat Vorrang.

AO TRD: STOP HI POS ON (143)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Freigabe von Hub-/Drehwinkelbegrenzung oben → Code 11

- [ON]
- OFF

AO TRD: STOP LO (28)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Hub-/Drehwinkelbegrenzung unten → Code 10

• 0.0 ... 49.9 %, [0.0 %]

Hinweis: Die Kennlinie wird nicht angepasst. Die Dichtschließfunktion hat Vorang.

AO TRD: STOP LO POS ON (142)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Freigabe von Hub-/Drehwinkelbegrenzung unten → Code 10

- ON
- [OFF]

AO TRD: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY iedes einzelnen Blocks.

Hinweis: Diese Daten werden vom AO TRD weder geprüft noch verarbeitet.

AO TRD: STROKE TIME CLOS LIM (92)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Gewünschte Laufzeit zu → Code 22

Zeit um den Arbeitsbereich beim Schließen des Stellventils zu durchfahren

AO TRD: STROKE TIME CLOSED (71)

Speicherklasse S; Lesezugriff (r)

Minimale Laufzeit zu → Code 41

Zeit [s], die das System Stellungsrealer, Antrieb und Ventil benötigt, um den Nennhub/Nennwinkel in Richtung des zu schließenden Ventils (0 %-Position) zu durchfahren

Der Wert wird während der Initialisierung gemessen.

AO TRD: STROKE TIME OPEN (72)

Speicherklasse S: Lesezuariff (r)

Minimale Laufzeit auf \rightarrow Code 40

Zeit [s], die das System Stellungsregler, Antrieb und Ventil benötigt, um den Nennhub/Nennwinkel in Richtung des zu öffnenden Ventils (100 %-Position) zu durchfahren

Der Wert wird während der Initialisierung gemessen.

AO TRD: STROKE TIME OPEN LIM (93)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Gewünschte Laufzeit auf → Code 21

Zeit um den Arbeitsbereich beim Öffnen des Stellventils zu durchfahren

AO TRD: SUB MOD INIT (130)

Speicherklasse D; Lesezugriff (r)

Zeigt an, ob die Initialisierung im Modus SUB (Ersatzabgleich) durchgeführt wurde.

AO TRD: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

max. 32 Zeichen, Johne Textl

AO TRD: THRESHOLD END POS RECORDING (207)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Beobachterfunktion Enlagentrend: Untere Endlage

Schwellwert für die Wertaufnahme

AO TRD: TRANS PIN POS (127)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Stiftposition → Code 4

AO TRD: TRANSDUCER DIRECTORY (9) · Parameter wird nicht unterstützt!

AO TRD: TRANSDUCER STATE (112)

Speicherklasse D; Lesezugriff (r)

Zustand Transducer → Code 48 t2

- 1 See operating mode · val. Betriebsart
- 2 Solenoid valve active · Zwanasentlüftuna aktiv
- 3 Lower travel limit active · Untere Hubbegrenzung erreicht (x-Grenze unten)
- 4 Upper travel limit active · Obere Hubbegrenzung erreicht (x-Grenze oben)
- 5 End position < active · Dichtschließen des Ventils (Endlage bei w kleiner)
- 6 End position > active · Maximales Auffahren des Ventils (Endlage bei w größer)
- 7 Fail-safe position active · Sicherheitsstellung aktiv
- 8 Normal operation · Normalbetrieb

AO TRD: TRANSDUCER TYPE (10)

Speicherklasse D; Lesezugriff (r)

Art des Transducers, hier "Standard Advanced Positioner Valve"

AO TRD: TRANSDUCER TYPE VER (11)

Speicherklasse D; Lesezugriff (r)

Transducer Block für Stellungsregler nach Spezifikation FF-906

AO TRD: TRAVEL ACCUM (29)

Speicherklasse D; Lesezugriff (r)

Absolutes Wegintegral: Summe der Nennlastspiele (Doppelhübe), aufsummierter Ventilhub ightarrow Code 23

AO TRD: TRAVEL_ACCUM_DEADBAND (73) · Parameter wird nicht unterstützt!

AO TRD: TRAVEL_ACCUM_LIM (94) · Parameter wird nicht unterstützt!

AO TRD: TRAVEL ACCUM UNITS (95) · Parameter wird nicht unterstützt!

AO TRD: TRAVEL UNITS (30)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Einheit des Ventilhubes nach Tabelle TN-016

• [%] oder [°], im Fall eines nicht initialisierten Gerätes

AO TRD: TRIP TIMEOUT (74) . Parameter wird nicht unterstützt!

AO TRD: TV STEP (141)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Vorhaltezeit TV (Stufe) → Code 18

Hinweis: Über FF kann dieser Parameter nur gelesen werden, der Wert wird bei der Initialisierung ermittelt.

AO TRD: UNS CHAR STRUCTURE (300) · Parameter wird nicht unterstützt!

AO TRD: UNS INT STRUCTURE (298) · Parameter wird nicht unterstützt!

AO TRD: UNS SHORT STRUCTURE (299) · Parameter wird nicht unterstützt!

AO TRD: UPDATE EVT (7)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Anzeige, ob statische Daten geändert wurden, inklusive Änderungsdatum und Uhrzeit

AO TRD: VALVE MAN ID (49)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Hersteller des zum Stellungsregler zugehörigen Ventils

AO TRD: VALVE MODEL NUM (50)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Ventiltyp des zum Stellungsregler zugehörigen Ventils

AO TRD: VALVE SN (51)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Typenkennung des zum Stellungsregler zugehörigen Ventils

AO TRD: VALVE TYPE (52)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Ventilart

- -/- · undefiniert (Behandlung als Hubventil)
- [LINEAR] · linear (Stellventil mit geradlinig bewegtem Abschlusskörper, Hubventil)
- ROTARY · drehend (Stellventil mit drehend bewegtem Abschlusskörper, Part-Turn, Schwenkarmaturen)
- OTHER · andere (Behandlung als Hubventil)

Hinweis: Typ 3730-5 unterscheidet lediglich zwischen Hub- und Schwenkarmaturen, "UNINITIALIZED" und "OTHER" wird als Hubventil behandelt.

FF-Parameter

AO TRD: VST COMMAND (56)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang M/A

Starten/Abbrechen des Teilhubtests (PST)/Vollhubtests (FST)

AO TRD: VST DETAILED RESULT (60) · Parameter wird nicht unterstützt!

AO TRD: VST_MODE (57)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Auswahl des durchzuführenden VST (Valve Stroke Test)

- Deaktiviert
- [PST (Teilhubtest)]
- FST (Vollhubtest)

AO TRD: VST PAUSE (58)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Wartezeit nach dem ersten Sprung bis zweiter Sprung gestartet wird

• 0.1 ... 240.0 s, [2.0 s]

AO TRD: VST RESULT (59)

Speicherklasse N; Lesezugriff (r)

Ergebnis des letzten durchgeführten PST/FST (erfolgreich/nicht erfolgreich)

AO TRD: WORKING POS (19)

Speicherklasse D; Lesezugriff (r)

Tatsächliche Ventilstellung in %

AO TRD: WORKING POS D (34)

Speicherklasse D; Lesezugriff (r)

Tatsächliche diskrete Ventilstellung

AO TRD: WORKING SP (20)

Speicherklasse N; Lesezugriff (r)

Führungsgröße nach der Skalierung, Kennlinienhinterlegung und der Endlagenfunktion Entspricht der Führungsgröße des Regelalgorithmus für den AO FB im Modus Regelung.

AO TRD: WORKING SP D (35)

Speicherklasse N; Lesezugriff (r)

Diskrete Führungsgröße nach der Berücksichtigung der Bewegungsrichtung

Entspricht der Führungsgröße des Regelalgorithmus für den DO FB im Modus Auf/Zu.

AO TRD: XD CAL DATE (54)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Zeitpunkt der letzten Kalibrierung

AO TRD: XD CAL LOC (53)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Ort der letzten Kalibrierung

AO TRD: XD CAL WHO (55)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Person, die die letzte Kalibrierung durchführte

AO TRD: XD COMMAND (41)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Parameter zum Starten von Gerätespezifischen Prozeduren

- 1 No test, normal operation
- Start with default values
- 3 Start Initialization
- 4 Abort Initialization
- 5 Start Zero Point adjustment
- 6 Abort Zero Point adjustment
- 7 Search device

AO TRD: XD COMMAND FLAGS (75) · Parameter wird nicht unterstützt!

AO TRD: XD COMMAND STATE (42) · Parameter wird nicht unterstützt!

Speicherklasse D; Lesezugriff (r)

Status der Initialisieruna

AO TRD: XD ERROR (12)

Speicherklasse D; Lesezugriff (r)

Fehlermeldung des AO TRD

- NONE (0) · kein Fehler
- UNSPECIFIED ERROR · Nicht spezifizierter Fehler (Gerät nicht initialisiert, Initialisierung oder Nullpunktabgleich läuft oder Wegintegral überschritten)
- GENERAL ERROR · Allgemeiner Fehler (allgemeiner Gerätefehler)
- CALIBRATION ERROR · Kalibrierungsfehler (Nullpunkt-, interner Regelkreis- oder Initialisierungsfehler, Referenzlauf abgebrochen → Code 81
- CONFIGURATION ERROR · Konfigurationsfehler (Parameter oder Kennlinie fehlerhaft)
- ELECTRONICS FAILURE · Fehler in der Elektronik (i/p-Wandler (Code 64), Hardware (Code 65), Busanschaltung)

- MECHANICAL FAILURE · Fehler in der Mechanik
- DATA INTEGRITY ERROR · Fehler in Datenintegrität, Prüfsummenfehler
- ALGORITHM ERROR · Dynamische Werte außer Bereich

AO TRD: XD ERROR EXT (113)

Speicherklasse D; Lesezugriff (r)

Erweiterte Fehlermeldungen des AO TRD

1 xd error ext 1

- Device not initialized
- Int. solenoid valve active
- Tot.valve travel limit exc.
- Control loop → Code 57
- Zero point → Code 58
- Autocorrection → Code 59
- Fatal error → Code 60
- Extented diagnosis → Code 79
- $x > range \rightarrow Code 50$
- Delta $x < range \rightarrow Code 51$
- Attachment \rightarrow Code 52
- Init, time exceeded → Code 53
- Init./int. solenoid valve → Code 54
- Travel time too short → Code 55
- Pin position/safety switch → Code 56
- Test or calibration running

2 xd error ext 2

- x-signal → Code 62
- i/p-converter → Code 64
- Hardware → Code 65
- Control parameter → Code 68
- Poti parameter → Code 69
- Adjustment parameter → Code 70
- General parameter → Code 71
- Internal device error 1 → Code 73
- No emergency mode → Code 76
- Program load error → Code 77
- Options parameter → Code 78

- Info parameter \rightarrow Code 75
- Data memory → Code 66
- Control calculation → Code 67
- Reference test aborted → Code 81
- 3 xd error ext 3
- Reset comm. controller
- Attachment unit disturbed
- Bin 2 deactivated
- Reset appl. controller
- FF parameter
- Mode unequal AUTO
- Temperature exceeding
- 14 Air Supply
- 15 Actuator Spring
- 16 Shifting Working Range
- 17 Friction
- 18 Leakage Pneumatic
- 19 Limit Working Range
- 20 Inner Leakage
- 21 External Leakage
- 22 Observing End Position
- 23 Connection Positioner Valve
- 24 Working Range
- 25 Temperature Error
- 26 PST/FST Status
- 27 OpenClose Status

AO TRD: XD FSTATE OPT (37)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Aktion bei Vorliegen eines Fehlers im AO TRD

- [Letzten Wert halten]
- Sicherheitsstellung
- Sicherheitswert (XD FSTATE VAL)

AO TRD: XD FSTATE VAL (31)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Sicherheitswert, der angefahren wird wenn sich der AO TRD in der Betriebsart "Außer Betrieb" (O/S) befindet und das Verhalten im Parameter XD OOS OPTS ausgwählt wurde.

• 0 ... 100 %, [0 %]

AO TRD: XD FSTATE VAL D (36)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Diskreter Sicherheitswert, der angefahren wird wenn sich der AO TRD in der Betriebsart "Außer Betrieb" (O/S) befindet und das Verhalten im Parameter XD_OOS_OPTS ausgwählt wurde.

- [0], 1
- 0 0 %
- 1 100 %

AO TRD: XD OOS OPTS (43)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Aktion, wenn sich der AO TRD in der Betriebsart "Außer Betrieb" (O/S) befindet

- [Letzten Wert halten]
- Sicherheitsstellung
- Sicherheitswert (XD FSTATE VAL)

AO TRD: Y HYST MIN TIME DISTANCE (195)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Diagramm Stellsignal y Hysterese Zeitlicher Abstand zur Wiederholung des Testes d5

• 0 ... 24 h. [1 h]

AO TRD: Y HYST TEST INFO (221)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2): Status des Tests

AO TRD: Y HYST TEST PROGRESS (222)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2): Fortschrittsanzeige des Tests in %

AO TRD: Y HYST TESTINFO (197)

Speicherklasse D; Lesezugriff (r)

Beobachterfunktion Diagramm Stellsignal y Hysterese (Test d5): Status des Testes

AO TRD: Y HYST TIME STAMP (220)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Hysterese (Test d2): Zeitstempel der Referenzwertaufnahme

AO TRD: Y HYST TOLERANCE BAND (196)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Beobachterfunktion Diagramm Stellsignal y Hysterese

Toleranzband des Testes d5 (bei Verlassen des Bandes wird der Test abgebrochen)

AO TRD: Y STAT TEST INFO (214)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1)

Aktueller Status des Tests

AO TRD: Y_STAT_TEST_PROGRESS (215)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1)

Aktueller Fortschritt des Tests

AO TRD: Y STAT TEST TIME STAMP (213)

Speicherklasse D; Lesezugriff (r)

Testfunktion Stellsignal y Stationär (Test d1) Zeitstempel der Referenzwertaufnahme

Zuordnung Index – Parameter: AO TRD

Index	Parameter
0	ADVANCED_PV_BASIC
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	UPDATE_EVT
8	BLOCK_ALM
9	TRANSDUCER_DIRECTORY
10	TRANSDUCER_TYPE
11	TRANSDUCER_TYPE_VER
12	XD_ERROR
13	COLLECTION_DIRECTORY
14	FINAL_VALUE
15	FINAL_VALUE_RANGE
16	FINAL_VALUE_CUTOFF_HI
17	FINAL_VALUE_CUTOFF_LO
18	FINAL_POSITION_VALUE
19	WORKING_POS
20	WORKING_SP
21	DEVIATION_DEADBAND
22	DEVIATION_TIME
23	DEVIATION_VALUE
24	POS_ALERT_HI
25	POS_ALERT_LO
26	RATED_TRAVEL
27	STOP_HI
28	STOP_LO
29	TRAVEL_ACCUM
30	TRAVEL_UNITS

Index	Parameter
31	XD_FSTATE_VAL
32	FINAL_VALUE_D
33	FINAL_POSITION_VALUE_D
34	WORKING_POS_D
35	WORKING_SP_D
36	XD_FSTATE_VAL_D
37	XD_FSTATE_OPT
38	CYCLE_CNTR
39	SIGNAL_ACTION
40	READBACK_SELECT
41	XD_COMMAND
42	XD_COMMAND_STATE
43	XD_OOS_OPTS
44	POS_FEATURES
45	ACT_FAIL_ACTION
46	ACT_MAN_ID
47	ACT_MODEL_NUM
48	ACT_SN
49	VALVE_MAN_ID
50	VALVE_MODEL_NUM
51	VALVE_SN
52	VALVE_TYPE
53	XD_CAL_LOC
54	XD_CAL_DATE
55	XD_CAL_WHO
56	VST_COMMAND
57	VST_MODE
58	VST_PAUSE
59	VST_RESULT
60	VST_DETAILED_RESULT
61	CLOSED_POS_DEADBAND

Index	Parameter
62	CLOSED_POS_SHIFT
63	CUSTOM_CURVE_DESCRIPTION
64	CUSTOM_CURVE_XY
65	CUSTOM_CURVE_XY_FLOAT
66	CYCLE_COUNTER_DEADBAND
67	FRICTION_UNITS
68	FRICTION
69	HYSTERESIS
70	POS_DEADBAND
71	STROKE_TIME_CLOSED
72	STROKE_TIME_OPEN
73	TRAVEL_ACCUM_DEADBAND
74	TRIP_TIMEOUT
75	XD_COMMAND_FLAGS
76	CYCLE_CNTR_LIM
77	PST_BREAKOUT_TIME
78	PST_BREAKOUT_TIMEOUT
79	PST_INITIAL_START_TIME
80	PST_INTERVAL
81	PST_OPTIONS
82	PST_RAMP_RATE
83	PST_STRK_TRAV
84	PST_STRK_TRAV_TIMEOUT
85	PST_COMPLETION_TIMEOUT
86	FST_BREAKOUT_TIME
87	FST_BREAKOUT_TIMEOUT
88	FST_RAMP_RATE
89	FST_STRK_TRAV_TIMEOUT
90	FST_COMPLETION_TIMEOUT
91	CHARACTERIZATION
92	STROKE_TIME_CLOS_LIM
93	STROKE_TIME_OPEN_LIM

Index	Parameter
94	TRAVEL_ACCUM_LIM
95	TRAVEL_ACCUM_UNITS
96	INTERNAL_TEMP
97	INTERNAL_TEMP_MIN
98	INTERNAL_TEMP_MAX
99	INTERNAL_TEMP_UNITS
100	ERROR_OPTION_INIT_FAILURE
101	ERROR_OPTION_OPERATION_FAILURE
102	ERROR_OPTION_HW_FAILURE
103	ERROR_OPTION_DATA_FAILURE
104	ERROR_OPTION_ENH_DIAGNOSTIC_1
105	ERROR_OPTION_ENH_DIAGNOSTIC_2
106	ERROR_OPTION_ENH_DIAGNOSTIC_3
107	ERROR_OPTION_ENH_DIAGNOSTIC_4
108	ERROR_OPTION_ENH_DIAGNOSTIC_5
109	ALARM_OPTIONS
110	SIMULATION_MESSAGE
111	SIMULATION_ENABLE
112	TRANSDUCER_STATE
113	XD_ERROR_EXT
114	DEVIATION_MIN
115	DEVIATION_MAX
116	LOGGING_MGV
117	MIN_CLEARANCE_NEW_LOGGING_MGV
118	IDENT_OPTIONS
119	SELECT_OPTIONS
120	CONFIG_BINARY_INPUT_2
121	BINARY_INPUT_2
122	POSITIONER_MODEL
123	BINARY_FUNCTION
124	BINARY_FUNCTION_STATUS
125	DEVICE_CHARACTERISTIC

Index	Parameter
126	SET_FAIL_SAFE_POS
127	TRANS_PIN_POS
128	INIT_METHOD
129	INIT_WITH_REF_TEST
130	SUB_MOD_INIT
131	OPTI_SUB_INIT
132	DEVICE_INIT_STATE
133	DEVICE_STATUS_INIT
134	CLOSING_DIRECTION
135	FINAL_VALUE_CUTOFF_LO_ON
136	FINAL_VALUE_CUTOFF_HI_ON
137	BLOCKING_POSITION
138	PRESSURE_LIMIT
139	SELECT_EMERGENCY_MODE
140	KP_STEP
141	TV_STEP
142	STOP_LO_POS_ON
143	STOP_HI_POS_ON
144	FINAL_POSITION_VALUE_LIMITS
145	DIAG_LEVEL
146	START_STOP_ALL_FUNCTION
147	RESET_STATUS_MESSAGE_DIAG
148	HIS_TEMPERATURE
149	ELAPSED_HOURS_METER
150	NO_OF_ZERO_POINT_ADJ
151	COUNTER_INIT_START
152	EVENT_LOGGING_1
153	EVENT_LOGGING_2
154	PROTOKOLL_BSZ_START
155	DIAG_RESET_AFTER_TIME
156	DIAG_RESET_AFTER_TIMEOUT
157	APPLICATION_TYPE_OC_CONTROL

Index	Parameter
158	LIMIT_VALUE_TIME_ANALYSIS
159	LIMIT_TIME_TRAVEL_ANALYSIS
160	ANALYSIS_OPEN_CLOSE
161	DL_CONFIG_R
162	DL_CONFIG_WR
163	DL_HISTOGR_TIME_1
164	DL_HISTOGR_TIME_2
165	DL_HISTOGR_TIME_3
166	DL_HISTOGR_TIME_4
167	DL_HISTOGR_VENTILST_1
168	DL_HISTOGR_VENTILST_2
169	DL_HISTOGR_VENTILST_3
170	DL_HISTOGR_VENTILST_4
171	DL_HISTOGR_W_1
172	DL_HISTOGR_W_2
173	DL_HISTOGR_W_3
174	DL_HISTOGR_W_4
175	DL_HISTOGR_E_1
176	DL_HISTOGR_E_2
177	DL_HISTOGR_E_3
178	DL_HISTOGR_E_4
179	DL_HISTOGR_Y_1
180	DL_HISTOGR_Y_2
181	DL_HISTOGR_Y_3
182	DL_HISTOGR_Y_4
183	HISTOGR_X_LONG
184	HISTOGR_X_SHORT
185	HISTOGR_X_SCAN_RATE
186	DL_HISTOGR_E_LONG
187	DL_HISTOGR_E_SHORT
188	DL_HISTOGR_E_SCAN_RATE
189	DL_HISTOGR_Z_LONG

Index	Parameter
190	DL_HISTOGR_Z_SHORT
191	DIAGR_STELL_Y_STAT_LONG
192	DIAGR_STELL_Y_STAT_KURZ
193	DIAGR_STELL_Y_STAT_SHORT
194	DIAGR_VALVE_POS_STAT_SHORT
195	Y_HYST_MIN_TIME_DISTANCE
196	Y_HYST_TOLERANCE_BAND
197	Y_HYST_TESTINFO
198	HYST_SHORT_DIFF_Y
199	HYST_VALVE_POS
200	DIAGR_STELL_Y_HYSTERESE_WH
201	END_POS_TREND_REF_VALUES_REF
202	END_POS_TREND_REF_TIME_REF
203	END_POS_TREND_REF_DRIVE_SIG_REF
204	END_POS_TREND_REF_VALUES
205	END_POS_TREND_REF_TIME
206	END_POS_TREND_REF_DRIVE_SIG
207	THRESHOLD_END_POS_RECORDING
208	DIAGR_END_POS_TREND_X_EPT
209	DIAGR_END_POS_TREND_X_REF
210	AUTOMATIC_TEST_STATUS
211	DIAG_REFLAUF_INFO
212	REFLAUF_VOLLST
213	Y_STAT_TEST_TIME_STAMP
214	Y_STAT_TEST_INFO
215	Y_STAT_TEST_PROGRESS
216	DIAGR_STELL_Y_STAT_TEST_REF
217	DIAGR_STELL_X_STAT_TEST_REF
218	DIAGR_STELL_Y_STAT_TEST_WH
219	DIAGR_STELL_X_STAT_TEST_WH
220	Y_HYST_TIME_STAMP
221	Y_HYST_TEST_INFO

Index	Parameter
222	Y_HYST_TEST_PROGRESS
223	DIAGR_STELL_Y_HYST_TEST_REF
224	DIAGR_STELL_X_HYST_TEST_REF
225	DIAGR_STELL_Y_HYST_TEST_WH
226	DIAGR_STELL_X_HYST_TEST_WH
227	STAT_KENNL_R
228	STAT_KENNL_W
229	DIAGR_STAT_KENNL_VENTILST1
230	DIAGR_STAT_KENNL_VENTILST2
231	DIAGR_STAT_KENNL_VENTILST3
232	DIAGR_STAT_KENNL_VENTILST4
233	DIAGR_STAT_KENNL_W1
234	DIAGR_STAT_KENNL_W2
235	DIAGR_STAT_KENNL_W3
236	DIAGR_STAT_KENNL_W4
237	PST_TESTMODE_TARGET
238	PST_AUTOSTART_READ
239	PST_TEST_INFO
240	PST_SETTINGS
241	PST_CANCEL_COND
242	PST_DISPLAY
243	PST_MEAS_DATA1
244	PST_MEAS_DATA2
245	PST_MEAS_DATA3
246	PST_TEST_STAT1
247	PST_TEST_STAT2
248	PST_TEST_STAT3
249	PST_DIAGR_TIME1
250	PST_DIAGR_TIME2
251	PST_DIAGR_TIME3
252	PST_DIAGR_TIME4
253	PST_DIAGR_X1

FF-Parameter

Index	Parameter
254	PST_DIAGR_X2
255	PST_DIAGR_X3
256	PST_DIAGR_X4
257	PST_DIAGR_W1
258	PST_DIAGR_W2
259	PST_DIAGR_W3
260	PST_DIAGR_W4
261	PST_DIAGR_E1
262	PST_DIAGR_E2
263	PST_DIAGR_E3
264	PST_DIAGR_E4
265	PST_DIAGR_Y1
266	PST_DIAGR_Y2
267	PST_DIAGR_Y3
268	PST_DIAGR_Y4
269	FST_SETTINGS
270	FST_DISPLAY
271	FST_MEAS_DATA1
272	FST_MEAS_DATA2
273	FST_MEAS_DATA3
274	FST_TEST_STAT1
275	FST_TEST_STAT2
276	FST_TEST_STAT3
277	FST_DIAGR_TIME1
278	FST_DIAGR_TIME2
279	FST_DIAGR_TIME3
280	FST_DIAGR_TIME4
281	FST_DIAGR_X1
282	FST_DIAGR_X2
283	FST_DIAGR_X3
284	FST_DIAGR_X4
285	FST_DIAGR_W1

Index	Parameter
286	FST_DIAGR_W2
287	FST_DIAGR_W3
288	FST_DIAGR_W4
289	FST_DIAGR_E1
290	FST_DIAGR_E2
291	FST_DIAGR_E3
292	FST_DIAGR_E4
293	FST_DIAGR_Y1
294	FST_DIAGR_Y2
295	FST_DIAGR_Y3
296	FST_DIAGR_Y4
297	FLOAT_STR
298	UNS_INT_STRUCTURE
299	UNS_SHORT_STRUCTURE
300	UNS_CHAR_STRUCTURE
301	FRICTION_LIMITS
302	FST_TEST_INFO
303	LS_LEAKAGE_LEVEL
304	LS_ALARM_RELEASE
305	LS_SELECT_ALARM_LIMITS
306	LS_ALARM_INFORMATION
307	LS_ALARM_LIMIT_1
308	LS_ALARM_LIMIT_2
309	LS_ALARM_LIMIT_3
310	LS_TEST_INFORMATION

7.5.3 **Analog Output Function Block (AO FB)**

AO FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

AO FB: **BKCAL OUT (25)**

Speicherklasse D; Lesezugriff (r)

Analoger Ausgangswert für vorgeschalteten Block (Wert und Status)

Der Wert BKCAL OUT wird bei der Kaskadenregelung dem Parameter BKCAL IN des vorgeschalteten Funktionsblocks übergeben. Er verhindert die Integralsättigung des Reglers und ermöglicht so eine stoßfreie Betriebsumschaltung.

AO FB: BLOCK ALM (30)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler inklusive der Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

AO FB: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler → Code 48 A8

- OUT OF SERVICE · Außer Betrieb
- CONFIGURATION_ERROR · Im Block liegt ein Konfigurationsfehler vor
- INPUT FAILURE PV · Stellungsrückmeldung hat Status "schlecht", z. B. weil sich der Transducer Block in Betriebsart "Außer Betrieb" (O/S) befindet.
- OUTPUT FAILURE · Stellwert OUT kann nicht ausgegeben werden, z. B. weil der Transducer Block nicht initialisiert oder in Betriebsart "Lokale Überlagerung" (LO)

AO FB: **CAS IN (17)**

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoge Führungsgröße, übernommen von einem vorgeschalteten Funktionsblock (Wert und Status) → Code 48 A2/A3

AO FB: CHANNEL (22)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Zuordnung zwischen dem Ausgang des AO FB und den logischen Hardwarekanälen (Transducer Block)

• [3]

Hinweis: Um den AO FB in Betrieb nehmen zu können, muss CHANNEL = 3 gesetzt werden, um diesen dem AO TRD zuordnen zu können.

AO FB: FSTATE TIME (23)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitszeit [s]

Zeit von der Erkennung eines Fehlers des für den AO FB in der aktuellen Betriebsart gültigen Sollwertes bis zum Auslösen des Sicherheitsverhalten

• [0]

Hinweis: Wenn nach Ablauf dieses Zeitintervalls der Fehler weiterhin vorliegt, wird das Sicherheitsverhalten ausgelöst.

Das Sicherheitsverhalten des AO FB wird im Parameter IO OPTS dieses Blocks festgelegt.

AO FB: FSTATE VAL (24)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitswert

Wert für den AO FB bei ausgelöstem Sicherheitsverhalten

Wert und Bereich von PV_SCALE ±10 %, [0]

Hinweis: Wert wird verwendet, wenn im Parameter IO_OPTS die Option FAULT STATE TO VALUE ausgewählt ist.

AO FB: GRANT_DENY (13) · Parameter wird nicht ausgewertet!

AO FB: IO OPTS (14)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Auswahl des Ein-/Ausgangsverhaltens des AO FB

- SP-PV TRACK IN MAN · SP folgt PV in Betriebsart (Actual Mode) MAN
- SP-PV TRACK IN LO · SP folgt PV in Betriebsart (Actual Mode) LO
- SP TRACK RETAINED TARGET · SP folgt RCAS_IN oder CAS_IN abhängig vom voreingestellten Target Mode in Betriebsart (Actual Mode) LO oder MAN. Diese Option hat Vorrang gegenüber SP-PV TRACK IN MAN/LO.
- INCREASE TO CLOSE · Invertierung des Ausgangswertes zum Transducer Block (entspricht Bewegungsrichtung)
- FAULT STATE TO VALUE · Bei Auslösen des Sicherheitsverhaltens wird FSTATE_VAL als Sollwert verwendet (siehe FSTATE VAL, FSTATE TIME)

- USE FAULT STATE VALUE ON RESTART · Bei Anlauf des Gerätes wird FSTATE VAL als Sollwertvorgabe verwendet bis ein gültiger Wert vorliegt
- TARGET TO MAN IF FAULT STATE ACTIVATED · Bei Auslösen des Sicherheitsverhaltens wird der Target Mode auf MAN gesetzt, die ursprüngliche Zielbetriebsart geht verloren. Nach Verlassen des Sicherheitsverhaltens verbleibt der Block in MAN und muss vom Anwender in die gewünschte Betriebsart gesetzt werden.
- USE PV FOR BKCAL OUT . Über BKCAL OUT wird an Stelle des Arbeitssollwertes der Prozesswert PV zurückgegeben. Ist im RES Block-Parameter FEATURES SEL die Option OUT READBACK gesetzt, wird dann über BKCAL OUT die aktuelle Ventilstellung zurückgemeldet

AO FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Betriebsart

- Target Mode (Gewünschte Betriebsart des Blocks) → Code 48 A0
- Actual Mode (Aktuelle Betriebsart des Blocks; nur Anzeige) → Code 48 A1
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart des Blocks; nur Anzeige)
- O/S · Außer Betrieb: Der AO FB wird nicht ausgeführt. Am Parameter OUT wird der letzte Wert bzw. bei aktiver Störungsbehandlung der festgelegte Wert ausgegeben.
- MAN · Manueller Eingriff durch den Operator: Der Ausgangswert des AO FB kann über den Parameter OUT vom Bediener direkt vorgegeben werden.
- AUTO · Automatikbetrieb: Der vom Bediener vorgegebene Sollwert wird über den Parameter SP bei der Ausführung des AO FB verwendet.
- CAS · Kaskadenbetrieb: Der AO FB erhält über den Parameter CAS IN die Führungsgröße zur internen Berechnung der Stellgröße direkt von einem vorgeschalteten Funktionsblock. Der AO Funktionsblock wird ausgeführt.
- RCAS · Externe Kaskade: Der AO FB erhält über den Parameter RCAS IN die Führungsgröße zur internen Berechnung der Stellgröße direkt vom Feldbus-Host-System. Der AO FB wird ausgeführt.

AO FB: OUT (9)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang M/O

Stellgröße des AO FB (Wert, Grenzwert und Status) → Code 48 A6/7

Bereich von OUT SCALE ±10 %; Einheit von der Parametergruppe XD SCALE

Hinweis: Ist in dem Parameter MODE BLK die Betriebsart MAN (Manueller Eingriff durch den Operator) angewählt, kann hier der Ausgangswert OUT manuell vorgegeben werden.

AO FB: PV (7)

Speicherklasse D; Lesezugriff (r)

Prozessvariable des Funktionsblocks (Wert und Status)

• Einheit von der Parametergruppe XD SCALE

Hinweis: Ist im RES Block im Parameter FEATURES_SEL die Option OUT_READBACK aktiviert, enthält PV die aktuelle Ventilstellung (entsprechend FINAL POSITION VALUE).

AO FB: PV SCALE (11)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Bereich der Prozessvariablen (PV) (Anfang, Ende, Einheit und Dezimalpunkt)

• 0 bis 100 %

AO FB: RCAS IN (26)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoge Führungsgröße zur internen Berechnung der Stellgröße (Wert und Status)

Der Wert RCAS IN wird vom Feldbus-Host-System zur Verfügung gestellt.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

AO FB: RCAS OUT (28)

Speicherklasse D; Lesezugriff (r)

Analoge Führungsgröße nach Anwendung der Rampenfunktion (Wert und Status)

Der Wert RCAS_OUT wird dem Feldbus-Host-System zur Verfügung gestellt, um Rückrechnungen bei Betriebsartwechsel oder begrenzten Signalen durchzuführen.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

AO FB: READBACK (16)

Speicherklasse D; Lesezugriff (r)

Aktuelle Ventilposition, ermittelt aus FINAL_POSITION_VALUE des zugehörigen Transducer Blocks

Einheit von der Parametergruppe XD SCALE

AO FB: SHED OPT (27)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überwachungszeitüberschreitung (siehe SHED_RCAS im RES Block)

Überprüfung der Verbindung zwischen dem Feldbus-Host-System und dem AO FB in der Betriebsart RCAS: Nach Ablauf der Überwachungszeit wechselt der AO FB von der Betriebsart RCAS in die hier ausgewählte Betriebsart.

Es wird auch das Verhalten nach Beendigung des Fehlzustandes festgelegt.

[UNINITIALIZED] · Nicht initialisiert

- NORMAL SHED NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- NORMAL SHED NO RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart.
- SHED TO AUTO NORMAL RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO AUTO NO RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart AUTO.
- SHED TO MANUAL NORMAL RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO MANUAL NO RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart MAN.
- SHED TO RETAINED TARGET NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO RETAINED TARGET NO RETURN · Wechsel in nächstmöaliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart.

Hinweis: Dieser Parameter ist im AO FB nur in der Betriebsart RCAS aktiv. Ist der Wert UNINITIALIZED gesetzt, kann der AO FB nicht in die Betriebsart RCAS gebracht werden.

AO FB: SIMULATE (10)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang ALL

Simulation der Prozessvariablen PV des Blocks (Wert und Status) → Code 48 F3

Hinweis: Während der Simulation wird der Wert von OUT nicht an den Transducer Block übergeben, der Transducer Block behält den letzten gültigen Wert vor der Aktivierung der Simulation.

Die Aktivierung der Simulation ist nur möglich, wenn im Parameter BLOCK ERR des RES Blocks SIMULATE ACTIVE gesetzt ist.

AO FB: SP (8)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Führungsgröße w in der Betriebsart AUTO → Code 48 A4/5

Wert und Bereich von PV SCALE ±10 %; Einheit von PV SCALE

AO FB: SP HI LIM (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Führungsgrößenbegrenzung oben

Wert und Bereich von PV SCALE ±10 %, [100 %]

Hinweis: Wird die Einstellung des Skalenendes im Parameter PV_SCALE verändert, sollte dieser Wert entsprechend angepasst werden.

FF-Parameter

AO FB: SP LO LIM (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Führungsgrößenbegrenzung unten

Wert und Bereich von PV SCALE ±10 %, [0 %]

Hinweis: Wird die Einstellung des Skalenendes im Parameter PV_SCALE verändert, sollte dieser Wert entsprechend angepasst werden.

AO FB: SP RATE DN (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Rampensteilheit für abfallende Führungsgrößenänderungen in der Betriebsart AUTO

• [3402823466 x 10³⁸]

Hinweis: Bei "O" wird die Führungsgröße direkt verwendet.

Die Geschwindigkeitsbegrenzung ist für Ausgangsblöcke in der Betriebsart AUTO und CAS aktiv.

AO FB: SP RATE UP (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Rampensteilheit für ansteigende Führungsgrößenänderungen in der Betriebsart AUTO

• [3402823466 x 10³⁸]

Hinweis: Bei Eingabe des Wertes "O" wird die Führungsgröße direkt verwendet.

Die Geschwindigkeitsbegrenzung ist für Ausgangsblöcke in der Betriebsart AUTO und CAS aktiv

AO FB: ST REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer (AO FB)

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert.

AO FB: STATUS OPTS (15)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Statusoptionen zur Festlegung der Statusbehandlung und -verarbeitung

- [UNINITIALIZED] · Nicht initialisiert
- PROPAGATE FAULT BACKWARD · Status des Transducers wird über Status von BKCAL_OUT an vorgeschalteten Block weitergereicht

AO FR: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom AO FB weder geprüft noch verarbeitet.

AO FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

UPDATE EVT (29) AO FB:

Speicherklasse D; Lesezugriff (r)

Anzeige, ob statische Blockdaten geändert wurden, Änderungsdatum und -uhrzeit der Änderung

AO FB: XD SCALE (12)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Bereich der Stellgröße OUT (Anfang, Ende, Einheit und Dezimalpunkt)

• 0.0 bis 100.0 %; Angabe in [%], [mm] oder [grad]

Hinweis: Bei Verwendung von [%] wird der Wert für OUT bezogen auf 100 % skaliert. Bei [mm] (bei Hubventil) bzw. [grad] (bei Schwenkarmaturen) wird auf den jeweils in RATED TRAVEL im Transducer Block eingestellten Wert als 100 % skaliert.

Zuordnung Index - Parameter: AO FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	PV
8	SP
9	OUT
10	SIMULATE
11	PV_SCALE
12	XD_SCALE
13	GRANT_DENY
14	IO_OPTS
15	STATUS_OPTS

Index	Parameter
16	READBACK
17	CAS_IN
18	SP_RATE_DN
19	SP_RATE_UP
20	SP_HI_LIM
21	SP_LO_LIM
22	CHANNEL
23	FSTATE_TIME
24	FSTATE_VAL
25	BKCAL_OUT
26	rcas_in
27	SHED_OPT
28	RCAS_OUT
29	UPDATE_EVT
30	BLOCK_ALM

Proportional Integral Derivative Function Block (PID FB) 7.5.4

PID FB: **ACK OPTIONS (46)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Automatische Alarmquittierung PID FB

- [UNDEFINED] · Keine Auswahl
- HI HI ALM · oberer Grenzwert-Alarm
- HI ALM · oberer Grenzwert-Voralarm
- LO LO ALM · unterer Grenzwert-Alarm
- LO ALM · unterer Grenzwert-Voralarm
- DV HI ALM · Grenzwert-Alarm für obere Regeldifferenz
- DV LO ALM · Grenzwert-Alarm für untere Regeldifferenz
- BLOCK ALM · Blockalarm

Hinweis: Der Alarm wird an das Feldbus-Host-System gesendet, aber nicht von diesem quittiert.

PID FB: ALARM HYS (47)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hysterese für die oberen und unteren Alarmgrenzwerte

• 0 bis 50 %, [0.5 %]

Die Alarmbedingungen bleiben aktiv, solange sich der Messwert innerhalb der Hysterese befindet. Der Hysteresewert wirkt sich auf folgende Alarmgrenzwerte des PID FB aus:

HI_HI_LIM; HI_LIM; LO_LO_LIM; LO_LIM; DV_HI_LIM; DV_LO_LIM

Hinweis: Der Hysteresewert bezieht sich prozentual auf den Bereich der Parametergruppe PV_SCALE im PID FB.

PID FB: ALARM SUM (45)

Speicherklasse S/D; Lese- und Schreibzugriff (r/w); Zugana ALL

Aktueller Status der Prozessalarme im PID FB

- HI_HI_ALM · Verletzung des oberen Grenzwert-Alarms
- HI ALM · Verletzung des oberen Grenzwert-Voralarms
- LO LO ALM · Verletzung des unteren Grenzwert-Alarms
- LO ALM · Verletzung des unteren Grenzwert-Voralarms
- DV_HI_ALM · Verletzung des Grenzwert-Alarms für die obere Regeldifferenz
- DV LO ALM · Verletzung des Grenzwert-Alarms für die untere Regelifferenz
- BLOCK ALM · Blockalarm

Hinweis: Zusätzlich können in dieser Parametergruppe die Prozessalarme deaktiviert werden.

PID FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

PID FB: BAL TIME (25)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sättigung Integralfunktion

Zeitkonstante, mit der der Sättigung (berechnete Stellgröße > OUT_HI_LIM bzw. < OUT_LO_LIM) des Integralanteils entgegengewirkt wird

• [0]

Hinweis: Bei Wert 0 wird die Sättigung sofort abgebaut.

PID FB: BKCAL HYS (30)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Hysteresewert für Stellgrößen-Bereichsgrenzwerte OUT_HI_LIM und OUT_LO_LIM

• 0 bis 50 %, [0.5 %]

Überschreitet bzw. unterschreitet die berechnete Stellgröße den durch die Bereichsgrenzwerte definierten Bereich, so wird diese Bereichsverletzung im Parameter OUT angezeigt und an die nachfolgenden Blöcke kommuniziert.

Die Bereichsverletzung bleibt aktiv, solange der Wert der berechneten Stellgröße den Hysteresewert nicht wieder unter- bzw. überschreitet.

PID FB: BKCAL IN (27)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoger Eingangswert (Wert und Status)

BKCAL_IN wird bei einer Kaskadenregelung vom Parameter BKCAL_OUT des nachgeschalteten Funktionsblocks übernommen. Er sorgt durch Nachführung des Ausgangs für eine stoßfreie Betriebsumschaltung.

PID FB: BKCAL OUT (31)

Speicherklasse D; Lesezugriff (r)

Analoger Ausgangswert (Wert und Status)

BKCAL_OUT wird bei einer Kaskadenregelung dem Parameter BKCAL_IN des vorgeschalteten Funktionsblocks übergeben. Er verhindert die Integralsättigung des Reglers und ermöglicht so eine stoßfreie Betriebsumschaltung.

PID FR: BLOCK ALM (44)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang ALL

Aktueller Blockzustand mit Auskunft über anstehende Konfigurations-, Hardware- oder Systemfehler inklusive den Angaben über den Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

PID FB: **BLOCK ERR (6)**

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler → Code 48 P8

- OUT OF SERVICE · Der Block befindet sich in der Betriebsart "Außer Betrieb" (O/S).
- CONFIGURATION ERROR · Im Block liegt ein Konfigurationsfehler vor.

PID FR: BYPASS (17)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang M/O

Aktivierung der Stellgrößenberechnung durch den PID-Regelalgorithmus

- UNINITIALIZED · entspricht ON
- [OFF] · Bypass ausgeschaltet: die durch den PID-Regelalgorithmus ermittelte Stellgröße wird über den Parameter OUT ausgegeben.
- ON · Bypass eingeschaltet: der Wert der Führungsgröße SP wird direkt über den Parameter OUT ausgegeben.

Hinweis: Bei Einstellung UNINITIALIZED bleibt der Block in Betriebsart "Außer Betrieb" O/S. Zum Aktivieren des Bypasses (Einstellung ON) muss der Bypass in den Realeroptionen freigegeben werden (Parameter CONTROL OPTS).

PID FB: **CAS IN (18)**

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoge Führungsgröße (Wert und Status) → Code 48 P2/3

CAS IN wird vom vorgeschalteten Funktionsblock übernommen.

CONTROL OPTS (13) PID FB:

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Regleroptionen zur Festlegung der Automatisierungsstrategie

- [NONE]
- BYPASS ENABLE · Freigabe des Parameters BYPASS
- DIRECT ACTING · Direkte Wirkrichtung
- TRACK ENABLE · Freigabe der Nachführung
- TRACK IN MANUAL · Nachführung von Hand
- PV FOR BKCAL OUT · Wert und Status von PV für BKCAL OUT verwenden
- NO OUT LIMITS IN MANUAL · Keine Ausgangsbegrenzung in Betriebsart MAN

FF-Parameter

PID FR: **DV HI ALM (64)**

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang ALL

Alarm für die obere Regeldifferenz (DV_HI_LIM), inklusive den Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) und dem Wert, welcher den Alarm ausgelöst hat

Hinweis: Zusätzlich kann in dieser Parametergruppe der aktive Alarm manuell quittiert werden.

PID FB: DV HI LIM (57)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Grenzwert für die obere Regeldifferenz

• [3402823466 x 10³⁸]

Überschreitet die Regelgröße die Führungsgröße um diesen Wert, wird der Voralarm DV HI ALM ausgegeben.

PID FR: DV HI PRI (56)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überschreiten der oberen Regeldifferenz (DV HI LIM)

- [0] · Die Verletzung des Grenzwertes für die obere Regeldifferenz wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des Grenzwertes für die obere Regeldifferenz.
- 2 · Reserviert für Blockalarme.
- 3 bis 7 · Die Verletzung des Grenzwertes für die obere Regeldifferenz wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedria, 7 = Priorität hoch
- 8 bis 15 · Die Verletzung des Grenzwertes für die obere Regeldifferenz wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = Priorität hoch

DV LO ALM (65) PID FB:

Speicherklasse D; Lesezugriff (r)

Alarm für die untere Regeldifferenz (DV LO LIM), inklusive den Angaben zum Alarmzeitpunkt (Datum, Zeit) und dem Wert, welcher den Alarm ausgelöst hat

Hinweis: Zusätzlich kann in dieser Parametergruppe der aktive Alarm manuell quittiert werden.

PID FB: DV LO LIM (59)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Grenzwert für die untere Regeldifferenz

• [-3402823466 x 10³⁸]

Unterschreitet die Regelgröße die Führungsgröße um diesen Wert, wird der Voralarm DV LO ALM ausgegeben.

PID FR: **DV LO PRI (58)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Unterschreiten der unteren Regeldifferenz (DV LO LIM)

- [0] · Die Verletzung des Grenzwertes für die untere Regeldifferenz wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des Grenzwertes für die untere Regeldifferenz
- 2 · Reserviert f
 ür Blockalarme.
- 3 bis 7 · Die Verletzung des Grenzwertes für die untere Regeldifferenz wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben:
 - 3 = Priorität niedrig, 7= Priorität hoch
- 8 bis 15 · Die Verletzung des Grenzwertes für die untere Regeldifferenz wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben:
 - 8 = Priorität niedrig, 15 = Priorität hoch

PID FB: **FF GAIN (42)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang M/O

Störgrößenverstärkung

• [0]

Hinweis: Die Störgrößenverstärkung wird mit der Störgröße FF VAL multipliziert. Das Ergebnis wird auf den Ausgangswert OUT addiert.

PID FB: FF SCALE (41)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang M/O

Messbereich der Störgröße FF VAL (Unter- und Obergrenze, Einheit und Dezimalpunkt)

• [0 bis 100 %]

PID FB: FF VAL (40)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Störgröße (Wert und Status)

Bereich und Einheit von FF SCALE

Hinweis: Die Störgröße wird mit der Störgrößenverstärkung FF GAIN multipliziert. Das Ergebnis wird auf den Ausgangswert OUT addiert.

PID FB: **GAIN (23)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Proportionalitätsfaktor

• [1.0]

Hinweis: Der Parameter muss auf einen Wert ungleich 0 gesetzt werden, ansonsten wird im Parameter BLOCK ERR ein Konfigurationsfehler gesetzt, der Block geht dann in Betriebsart "Außer Betrieb" (O/S).

FF-Parameter

PID FB: GRANT DENY (12) · Parameter wird nicht ausgewertet!

PID FB: HI ALM (61)

Speicherklasse D; Lesezugriff (r)

Alarm für den oberen Vorwarnalarmgrenzwert HI_LIM, inklusive den Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) und dem Wert welcher den Alarm ausgelöst hat

• Einheit von PV SCALE

PID FB: HI HI ALM (60)

Speicherklasse D; Lese- und Schreibzugriff (r/w)

Alarm für den oberen Alarmgrenzwert HI_HI_LIM, inklusive den Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) und dem Wert welcher den Alarm ausgelöst hat

Einheit von PV SCALE

Hinweis: Zusätzlich kann in dieser Parametergruppe der aktive Alarm manuell quittiert werden.

PID FB: HI_HI_LIM (49)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Alarmarenzwert für den oberen Alarm HI HI ALM

Bereich und Einheit von PV SCALE, [3402823466 x 10³⁸]

Überschreitet der Wert PV diesen Grenzwert, wird der Alarmstatusparameter HI_HI_ALM ausgegeben.

PID FB: HI HI PRI (48)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überschreiten des oberen Alarmarenzwertes HI HI LIM

- [0] · Die Verletzung des oberen Alarmgrenzwertes wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des oberen Alarmgrenzwertes
- 2 · Reserviert f
 ür Blockalarme
- 3 bis 7 · Die Verletzung des oberen Alarmgrenzwertes wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedrig, 7 = hoch
- 8 bis 15 · Die Verletzung des oberen Alarmgrenzwertes wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = Priorität hoch

PID FB: HI LIM (51)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Alarmgrenzwert für den oberen Vorwarnalarm HI_ALM

Bereich und Einheit von PV SCALE, [3402823466 x 10³⁸]

Überschreitet der Wert PV diesen Grenzwert, wird der Alarmstatusparameter HI_ALM ausgegeben.

PID FR: HI PRI (50)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überschreiten des oberen Vorwarnalarmgrenzwertes HI LIM

- [0] · Die Verletzung des oberen Vorwarnalarmgrenzwertes wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des oberen Vorwarnalarmgrenzwertes
- 2 · Reserviert f
 ür Blockalarme
- 3 bis 7 · Die Verletzung des oberen Vorwarnalarmgrenzwertes wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben:
 - 3 = Priorität niedrig, 7= Priorität hoch
- 8 bis 15 · Die Verletzung des oberen Vorwarnalarmgrenzwertes wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben:
 - 8 = Priorität niedrig, 15 = Priorität hoch

PID FB: IN (15)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoge Regelgröße x (Wert und Status)

PID FB: LO ALM (62)

Speicherklasse D; Lesezugriff (r)

Alarm für den unteren Vorwarnalarmgrenzwert LO LIM, inklusive den Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) und dem Wert welcher den Alarm ausgelöst hat.

Einheit von PV SCALE

PID FB: LO LIM (53)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Alarmarenzwert für den unteren Vorwarnalarm LO ALM

Bereich und Einheit von PV SCALE, [-3402823466 x 10³⁸]

Unterschreitet der Wert PV diesen Grenzwert, wird der Alarmstatusparameter LO ALM ausgegeben.

PID FB: LO LO ALM (63)

Speicherklasse D; Lesezugriff (r)

Alarm für den unteren Alarmgrenzwert LO LO LIM, inklusive den Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) und dem Wert welcher den Alarm ausgelöst hat.

Einheit von PV SCALE

Hinweis: Zusätzlich kann in dieser Parametergruppe der aktive Alarm manuell guittiert werden.

PID FB: LO LO LIM (55)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Alarmgrenzwert für den unteren Alarm LO LO ALM

Bereich und Einheit von PV SCALE, [-3402823466 x 10³⁸]

Unterschreitet der Wert PV diesen Grenzwert, wird der Alarmstatusparameter LO_LO_ALM ausgegeben.

PID FB: LO LO PRI (54)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Unterschreiten des unteren Alarmgrenzwertes LO LO LIM

- [0] · Die Verletzung des unteren Alarmgrenzwertes wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des unteren Alarmgrenzwertes
- 2 · Reserviert für Blockalarme
- 3 bis 7 · Die Verletzung des unteren Alarmgrenzwertes wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedrig, 7 = hoch
- 8 bis 15 · Die Verletzung des unteren Alarmgrenzwertes wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = hoch

PID FB: LO PRI (52)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Unterschreiten des unteren Vorwarnalarmgrenzwertes LO LIM

- [0] · Die Verletzung des unteren Vorwarnalarmgrenzwertes wird nicht ausgewertet.
- 1 · Keine Benachrichtigung bei Verletzung des unteren Vorwarnalarmgrenzwertes
- 2 · Reserviert für Blockalarme.
- 3 bis 7 · Die Verletzung des unteren Vorwarnalarmgrenzwertes wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedrig, 7= hoch
- 8 bis 15 · Die Verletzung des unteren Vorwarnalarmgrenzwertes wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = hoch

PID FB: MODE BLK (5)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Betriebsart

- Target Mode (Gewünschte Betriebsart des Blocks) → Code 48 PO
- Actual Mode (Aktuelle Betriebsart des Blocks; nur Anzeige) → Code 48 P1
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart des Blocks; nur Anzeige)
- O/S · Außer Betrieb: Der PID-Algorithmus des Blocks wird nicht ausgeführt. Am Parameter OUT wird der letzte Wert bzw. bei aktiver Störungsbehandlung der festgelegte Wert ausgegeben.

- MAN · Manueller Eingriff durch den Operator: Der Ausgangswert des Blocks kann über den Parameter OUT vom Bediener direkt vorgegeben werden.
- AUTO · Automatikbetrieb: Der vom Bediener vorgegebene Sollwert wird über den Parameter SP bei der Ausführung des PID FB verwendet.
- CAS · Kaskadenbetrieb: Der PID FB erhält über den Parameter CAS IN die Führungsgröße zur internen Berechnung der Stellgröße direkt von einem vorgeschalteten Funktionsblock. Der AO FB wird ausgeführt.
- RCAS · Externe Kaskade: Der PID FB erhält über den Parameter RCAS IN die Führungsgröße zur internen Berechnung der Stellgröße direkt vom Feldbus-Host-System. Der PID FB wird ausgeführt.
- ROUT · Externer Ausgang: Der PID FB erhält über den Parameter ROUT IN die Stellgröße direkt vom Feldbus-Host-System. Die Stellgröße wird über den Parameter OUT, ohne dass der interne PID Algorithmus ausgeführt wird, wieder ausgegeben.

PID FB: **OUT (9)**

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Stellgröße des AO FB (Wert, Grenzwert und Status) → Code 48 P6/7

Bereich OUT SCALE ±10 %, Einheit von XD SCALE

Hinweis: Ist in dem Parameter MODE BLK der Betriebsart MAN (Manueller Eingriff durch den Operator) angewählt, kann hier der Ausgangswert OUT manuell vorgegeben werden.

PID FB: OUT HI LIM (28)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Oberer Grenzwert analoge Stellgröße OUT

Bereich OUT SCALE ±10 %, Einheit von OUT SCALE, [100]

PID FB: **OUT LO LIM (29)**

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Unterer Grenzwert analoge Stellgröße OUT

Bereich OUT SCALE ±10 %, Einheit von OUT SCALE, [0]

PID FB: OUT SCALE (11)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Bereich der analogen Stellgröße OUT (Anfang, Ende, Einheit und Dezimalpunkt)

• [0 bis 100 %]

PID FB: PV (7)

Speicherklasse D; Lesezugriff (r)

Prozessvariable für die Blockausführung (Wert und Status)

Einheit von PV SCALE

FF-Parameter

PID FB: PV FTIME (16)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Filterzeitkonstante [s] des digitalen Filters 1. Ordnung

• [0]

Diese Zeit wird benötigt, um 63 % einer Änderung der Regelgröße am Eingang IN im Wert von PV wirksam werden zu lassen.

PID FB: PV SCALE (10)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Bereich der Prozessvariable PV (Anfang, Ende, Einheit und Dezimalpunkt)

• [0 bis 100 %]

PID FB: RATE (26)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Zeitkonstante [s] Differentialfunktion

• [0]

PID FB: RCAS IN (32)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoge Führungsgröße zur internen Berechnung der Stellgröße (Wert und Status)

RCAS IN wird vom Feldbus-Host-System zur Verfügung gestellt.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

PID FB: RCAS OUT (35)

Speicherklasse D; Lesezugriff (r)

Analoge Führungsgröße nach Anwendung der Rampenfunktion (Wert und Status)

RCAS_OUT wird dem Feldbus-Host-System zur Verfügung gestellt, um Rückrechnungen bei Betriebsartwechsel oder begrenzten Signalen durchzuführen.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

PID FB: RESET (24)

Speicherklasse S; Lese- und Schreibzugriff (r/w)

Zeitkonstante für die Integralfunktion

• [3402823466 x 10³⁸] (maximal möglicher Wert)

Hinweis: Der Kaltstartwert oder 0 schaltet die Integralfunktion aus.

PID FB: ROUT IN (33)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Stellgröße (Wert und Status)

ROUT IN wird vom Feldbus-Host-System zur Verfügung gestellt.

Hinweis: Dieser Parameter ist nur in der Betriebsart ROUT aktiv.

PID FB: ROUT OUT (36)

Speicherklasse D; Lesezugriff (r)

Analoge Führungsgröße (Wert und Status), eingelesen über den Parameter ROUT_IN ROUT_OUT wird dem Feldbus-Host-System zur Verfügung gestellt, um Rückrechnungen bei Betriebsartwechsel oder begrenzten Signalen durchzuführen.

Hinweis: Dieser Parameter ist nur in der Betriebsart ROUT aktiv.

PID FB: SHED OPT (34)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überwachungszeitüberschreitung (Parameter SHED_RCAS im RES Block) während der Überprüfung der Verbindung zwischen Feldbus-Host-System und PID FB in der Betriebsart RCAS oder ROUT

Nach Ablauf der Überwachungszeit wechselt der PID FB von der Betriebsart RCAS bzw. ROUT in die ausgewählte Betriebsart. Es wird auch das Verhalten nach Beendigung des Fehlerzustandes festgelegt.

- [UNINITIALIZED] · Nicht initialisiert
- NORMAL SHED_NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS bzw. ROUT
- NORMAL SHED_NO RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart.
- SHED TO AUTO_NORMAL RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS bzw. ROUT
- SHED TO AUTO_NO RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart AUTO
- SHED TO MANUAL_NORMAL RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS bzw. ROUT
- SHED TO MANUAL_NO RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart MAN
- SHED TO RETAINED TARGET_NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS bzw. ROUT
- SHED TO RETAINED TARGET_NO RETURN · Wechsel in n\u00e4chstm\u00f6gliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart

Hinweis: Dieser Parameter ist im PID FB nur in den Betriebsarten RCAS und ROUT aktiv. Ist der Wert UNINITIALIZED gesetzt, kann der PID FB nicht in die Betriebsarten RCAS oder ROUT gebracht werden.

PID FB: SP (8)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Führungsgröße w in Betriebsart AUTO (Wert und Status) → Code 48 P4/5

Wert und Bereich von PV_SCALE ±10 %

PID FB: SP HI LIM (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Führungsgrößenbegrenzung oben

Wert und Bereich von PV SCALE ±10 %, [100]

Hinweis: Wird die Einstellung des Skalenendes im Parameter PV_SCALE verändert, sollte dieser Wert entsprechend angepasst werden.

PID FB: SP LO LIM (22)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Führungsgrößenbegrenzung unten

Wert und Bereich von PV_SCALE ±10 %, [0]

Hinweis: Wird die Einstellung des Skalenendes im Parameter PV_SCALE verändert, sollte dieser Wert entsprechend angepasst werden.

PID FB: SP RATE DN (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Rampensteilheit für abfallende Führungsgrößenänderungen in der Betriebsart AUTO

• [3402823466 x 10³⁸]

Hinweis: Bei Eingabe des Wertes "O" wird der Sollwert direkt verwendet. Die Geschwindigkeitsbegrenzung ist für Regelblöcke nur in der Betriebsart AUTO aktiv.

PID FB: SP RATE UP (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Rampensteilheit für ansteigende Führungsgrößenänderungen in der Betriebsart AUTO [3402823466 x 10³⁸]

Hinweis: Bei Eingabe des Wertes "O" wird der Sollwert direkt verwendet. Die Geschwindigkeitsbegrenzung ist für Regelblöcke nur in der Betriebsart AUTO aktiv.

PID FB: ST REV (1)

Speicherklasse S; Lesezugriff (r)

Statische Revisions-Nummer (PID)

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert.

PID FB: STATUS OPTS (14)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Statusoptionen zur Festlegung der Statusbehandlung und -verarbeitung

- [UNINITIALIZED] · Nicht initialisiert
- IFS IF BAD IN · Störzustand des nachfolgenden AO FB auslösen, wenn die Regelgröße IN den Status auf BAD wechselt

- IFS IF BAD CAS IN · Störzustand des nachfolgenden AO FB auslösen, wenn die externe Führungsgröße CAS IN den Status auf BAD wechselt
- USE UNCERTAIN AS GOOD · Der Status UNCERTAIN wird als GOOD verwendet
- TARGET IN MANUAL IF BAD IN · Übergang in den Betriebsart MAN wenn die Regelgröße den Status auf BAD wechselt

PID FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom PID FB weder geprüft noch verarbeitet.

PID FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

PID FB: TRK IN D (38)

Speicherklasse N; Lese- und Speicherklasse (r/w); Zugang ALL

Diskreter Eingang, der die externe Ausgangs-Nachführung aktiviert (Wert und Status) Nach Aktivierung der Nachführung wechselt die Betriebsart in LO (Lokale Überlagerung). Dabei nimmt die Stellgröße am Ausgang OUT den über den Eingang TRK VAL vorgegebenen Wert an

PID FB: TRK SCALE (37)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M

Bereich der externen Nachführgröße TRK VAL (Anfang, Ende, Einheit und Dezimalpunkt)

• [0 bis 100 %]

PID FB: **TRK VAL (39)**

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Analoger Eingangswert für die externe Nachführung (Wert und Status)

TRK VAL wird von einem anderen Funktionsblock eingelesen.

PID FB: **UPDATE EVT (43)**

Speicherklasse D; Lesezugriff (r)

Anzeige ob Statische Blockdaten geändert wurden, inklusive Datum und Uhrzeit.

Zuordnung Index – Parameter: PID FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	PV
8	SP
9	OUT
10	PV_SCALE
11	OUT_SCALE
12	GRANT_DENY
13	CONTROL_OPTS
14	STATUS_OPTS
15	IN
16	PV_FTIME
17	BYPASS
18	CAS_IN
19	SP_RATE_DN
20	SP_RATE_UP
21	SP_HI_LIM
22	SP_LO_LIM
23	GAIN
24	RESET
25	BAL_TIME
26	RATE
27	BKCAL_IN
28	OUT_HI_LIM

Parameter
OUT_LO_LIM
BKCAL_HYS
BKCAL_OUT
rcas_in
ROUT_IN
SHED_OPT
RCAS_OUT
ROUT_OUT
TRK_SCALE
TRK_IN_D
TRK_VAL
FF_VAL
FF_SCALE
FF_GAIN
UPDATE_EVT
BLOCK_ALM
ALARM_SUM
ACK_OPTIONS
ALARM_HYS
HI_HI_PRI
HI_HI_LIM
HI_PRI
HI_LIM
LO_PRI
LO_LIM
LO_LO_PRI
LO_LO_LIM
DV_HI_PRI
DV_HI_LIM

Index	Parameter
58	DV_LO_PRI
59	DV_LO_LIM
60	HI_HI_ALM
61	HI_ALM
62	LO_ALM
63	LO_LO_ALM
64	DV_HI_ALM
65	DV_LO_ALM

7.5.5 Discrete Output Function Block (DO FB)

DO FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

DO FB: BKCAL OUT D (21)

Speicherklasse D; Lesezugriff (r)

Diskreter Ausgangswert für vorgeschalteten Block (Wert und Status)

Der Wert BKCAL_OUT_D wird bei der Kaskadenregelung dem Parameter BKCAL_IN des vorgeschalteten Funktionsblocks übergeben. Er verhindert die Integralsättigung des Reglers und ermöglicht so eine stoßfreie Betriebsumschaltung.

DO FB: BLOCK ALM (26)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler inklusive der Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

DO FB: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler → Code 48 A8

- OUT OF SERVICE · Außer Betrieb
- CONFIGURATION ERROR · Im Block liegt ein Konfigurationsfehler vor

DO FB: CAS IN D (17)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Diskreter Führungswert vom vorgeschalteten Funktionsblock (Wert und Status)

DO FB: CHANNEL (18)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Zuordnung zwischen dem Ausgang des DO FB und den logischen Hardwarekanälen (Transducer Block)

• [6] im DO1 FB und [7] im DO2 FB

Hinweis: Um den DO1 FB in Betrieb nehmen zu können, muss CHANNEL = 6 gesetzt werden, um diesen dem DO1 TRD zuordnen zu können. Um den DO2 FB in Betrieb nehmen zu können, muss CHANNEL = 7 gesetzt werden, um diesen dem DO2 TRD zuordnen zu können.

DO FB: FSTATE TIME (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitszeit [s]

Zeit von der Erkennung eines Fehlers des für den DO FB in der aktuellen Betriebsart gültigen Sollwertes bis zum Auslösen des Sicherheitsverhalten

• [0]

Hinweis: Wenn nach Ablauf dieses Zeitintervalls der Fehler weiterhin vorliegt, wird das Sicherheitsverhalten ausgelöst.

Das Sicherheitsverhalten des DO FB wird im Parameter IO OPTS dieses Blocks festgelegt.

DO FB: FSTATE VAL D (20)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitswert

Wert für den DO FB bei ausgelöstem Sicherheitsverhalten

Wert und Bereich von PV_SCALE ±10 %, [0]

Hinweis: Wert wird verwendet, wenn im Parameter IO_OPTS die Option FAULT STATE TO VALUE ausgewählt ist.

DO FB: GRANT_DENY (13) · Parameter wird nicht unterstützt!

DO FB: IO OPTS (14)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Auswahl des Ein-/Ausgangsverhaltens des DO FB

- INVERTIERT · Invertierung von SP D
- SP-PV TRACK IN MAN · SP folgt PV in Betriebsart (Actual Mode) MAN
- SP-PV TRACK IN LO · SP folgt PV in Betriebsart (Actual Mode) LO
- SP TRACK RETAINED TARGET · SP folgt RCAS_IN oder CAS_IN abhängig vom voreingestellten Target Mode in Betriebsart (Actual Mode) LO oder MAN. Diese Option hat Vorrang gegenüber SP-PV TRACK IN MAN/LO.
- FAULT STATE TO VALUE · Bei Auslösen des Sicherheitsverhaltens wird FSTATE_VAL_D als Sollwert verwendet (siehe FSTATE_VAL_D, FSTATE_TIME)
- USE FAULT STATE VALUE ON RESTART · Bei Anlauf des Gerätes wird FSTATE_VAL_D als Sollwertvorgabe verwendet bis ein gültiger Wert vorliegt.
- TARGET TO MAN IF FAULT STATE ACTIVATED · Bei Auslösen des Sicherheitsverhaltens wird der Target Mode auf MAN gesetzt, die ursprüngliche Zielbetriebsart geht verloren. Nach Verlassen des Sicherheitsverhaltens verbleibt der Block in MAN und muss vom Anwender in die gewünschte Betriebsart gesetzt werden.
- USE PV FOR BKCAL_OUT · Über BKCAL_OUT wird an Stelle des Arbeitssollwertes der Prozesswert PV_D zurückgegeben.

DO FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Betriebsart DO FB

- Target Mode (Gewünschte Betriebsart)
- Actual Mode (Aktuelle Betriebsart; nur Anzeige)
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart; nur Anzeige)
- AUTO · Automatikbetrieb: Der vom Bediener vorgegebene diskrete Sollwert wird über den Parameter SP D bei der Ausführung des DO FB verwendet.
- MAN · Manueller Eingriff durch den Operator: Der diskrete Ausgangswert des DO FB kann über den Parameter OUT_D vom Bediener direkt vorgegeben werden.
- CAS · Kaskadenbetrieb: Der DO FB erhält über den Parameter CAS_IN_D den diskreten Führungswert zur internen Bearbeitung der Stellgröße direkt vom vorgeschalteten Funktionsblock. Der DO FB wird ausgeführt.
- RCAS · Externe Kaskade: Der DO FB erhält über den Parameter RCAS_IN_D den diskreten Führungswert zur internen Bearbeitung der Stellgröße direkt vom Feldbus-Host-System. Der DO FB wird ausgeführt.
- O/S · Außer Betrieb: Der DO FB wird nicht ausgeführt. Am Parameter OUT_D wird der letzte Wert bzw. bei aktiver Störbehandlung der festgelegte Wert ausgegeben.

DO FB: OUT D (9)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Stellgröße des DO FB (Wert, Grenzwert und Status)

• Bereich von OUT_SCALE ±10 %; Einheit von der Parametergruppe XD_SCALE

Hinweis: Ist in dem Parameter MODE_BLK die Betriebsart MAN (Manueller Eingriff durch den Operator) angewählt, kann hier der Ausgangswert OUT manuell vorgegeben werden.

DO FB: PV D (7)

Speicherklasse D; Lesezugriff (r)

Diskrete Prozessvariable für die Bausteinausführung (Wert und Status)

DO FB: PV STATE (11)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Status der Parameter PV D und SP D

DO FB: RCAS IN D (22)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang ALL

Diskrete Führungsgröße zur internen Berechnung der Stellgröße (Wert und Status)

Der Wert RCAS IN D wird vom Feldbus-Host-System zur Verfügung gestellt.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

DO FB: RCAS OUT D (24)

Speicherklasse D; Lesezugriff (r)

Diskrete Führungsgröße nach Anwendung der Rampenfunktion (Wert und Status)

Der Wert RCAS_OUT_D wird dem Feldbus-Host-System zur Verfügung gestellt, um Rückrechnungen bei Betriebsartwechsel oder begrenzten Signalen durchzuführen.

Hinweis: Dieser Parameter ist nur in der Betriebsart RCAS aktiv.

DO FB: READBACK D (16)

Speicherklasse D; Lesezugriff (r)

Aktuelle diskrete Ventilposition

• 0: 0 %

• 1: 100 %

• 2: Zwischenstellung (0,5 % < x < 99,5 %)

DO FB: SHED_OPT (23)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Verhalten bei Überwachungszeitüberschreitung (siehe SHED_RCAS im RES Block)

Überprüfung der Verbindung zwischen dem Feldbus-Host-System und dem DO FB in der Betriebsart RCAS: Nach Ablauf der Überwachungszeit wechselt der DO FB von der Betriebsart RCAS in die hier ausgewählte Betriebsart.

Es wird auch das Verhalten nach Beendigung des Fehlzustandes festgelegt.

- [UNINITIALIZED] · Nicht initialisiert
- NORMAL SHED_NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- NORMAL SHED_NO RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart.
- SHED TO AUTO_NORMAL RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO AUTO_NO RETURN · Wechsel in Betriebsart AUTO, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart AUTO.
- SHED TO MANUAL_NORMAL RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO MANUAL_NO RETURN · Wechsel in Betriebsart MAN, nach Verlassen der Fehlerbedingung verbleibt der Block in Betriebsart MAN.
- SHED TO RETAINED TARGET_NORMAL RETURN · Wechsel in nächstmögliche Betriebsart, nach Verlassen der Fehlerbedingung Rückkehr in Betriebsart RCAS.
- SHED TO RETAINED TARGET_NO RETURN · Wechsel in n\u00e4chstm\u00f6gliche Betriebsart, nach Verlassen der Fehlerbedingung verbleibt der Block in dieser Betriebsart.

Hinweis: Dieser Parameter ist im DO FB nur in der Betriebsart RCAS aktiv. Ist der Wert UNINITIALIZED gesetzt, kann der DO FB nicht in die Betriebsart RCAS gebracht werden.

DO FB: SIMULATE D (10)

Speicherklasse D; Lese- und Schreibzugriff (r/w); Zugang ALL

Simulation der Prozessvariablen PV D des Blocks (Wert und Status)

Hinweis: Während der Simulation wird der Wert von OUT_D nicht an den Transducer Block übergeben, der Transducer Block behält den letzten gültigen Wert vor der Aktivierung der Simulation.

Die Aktivierung der Simulation ist nur möglich, wenn im Parameter BLOCK_ERR des RES Blocks SIMULATE ACTIVE gesetzt ist.

DO FB: SP_D (8)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Diskreter Sollwert (Führungsgröße) in der Betriebsart AUTO

DO FB: ST_REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert.

DO FB: STATUS OPTS (15)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Optionen für die Statusbehandlung

- Status UNSICHER wird als GUT verwendet: Ist der Status des Eingangswertes IN_x UNSICHER, so wird der Status OUT auf GUT gesetzt.
- UNSICHER, wenn Betriebsart HAND: Ist die Betriebsart (ACTUAL_MODE) MAN, so wird der Status von OUT auf UNSICHER gesetzt.

DO FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parametern STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom DO FB weder geprüft noch verarbeitet.

DO FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

UPDATE_EVT (25) DO FB:

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Blockdaten geändert wurden, inklusive Änderungsdatum und -uhrzeit der Änderung

DO FB: XD_STATE (12)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Status der Parameter OUT_D und READBACK_D

Zuordnung Index - Parameter: DO1 FB und DO2 FB

Index	Parameter
0	-
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	PV_D
8	SP_D
9	OUT_D
10	SIMULATE_D
11	PV_STATE
12	XD_STATE
13	GRANT_DENY

Index	Parameter
14	IO_OPTS
15	STATUS_OPTS
16	READBACK_D
17	CAS_IN_D
18	CHANNEL
19	FSTATE_TIME
20	FSTATE_VAL_D
21	BKCAL_OUT_D
22	RCAS_IN_D
23	SHED_OPT
24	RCAS_OUT_D
25	UPDATE_EVT
26	BLOCK_ALM

7.5.6 Discrete Input Function Block (DI1 FB + DI2 FB)

DI FB: ACK OPTIONS (21)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Automatische Alarmquittierung DI FB

- [UNDEFINED] · keine Auswahl
- BLOCK ALM · Blockalarm
- DISC ALM · Schreibschutz wurde verändert

Hinweis: Der Alarm wird an das Feldbus-Host-System gesendet, aber nicht von diesem quittiert.

DI FB: ALARM SUM (20)

Speicherklasse S/D; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Aktueller Status der Prozessalarme im DI FB

- BLOCK ALM · Blockalarm
- DISC ALM · Schreibschutz wurde verändert

Hinweis: Zusätzlich können in dieser Parametergruppe die Prozessalarme deaktiviert werden.

DI FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

DI FB: BLOCK ALM (19)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand mit Auskunft über anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Zeit) bei Auftreten des Fehlers

DI FB: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler → Code 48 I6 für DI1, Code 48 L6 für DI2

- OUT OF SERVICE · Der Blockmodus ist außer Betrieb.
- CONFIGURATION ERROR · Im Block liegt ein Konfigurationsfehler vor.

DI FR: CHANNEL (15)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Zuordnung zwischen dem Ausgang des DI FB und den logischen Hardwarekanälen (TRD)

• [1] im DI1 FB und [2] im DI2 FB

Hinweis: Um den DI1 FB in Betrieb nehmen zu können, muss CHANNEL = 1 gesetzt werden. um diesen dem DI1 TRD zuordnen zu können. Um den DI2 FB in Betrieb nehmen zu können, muss CHANNEL = 2 gesetzt werden, um diesen dem DI2 TRD zuordnen zu können.

DI FB: DISC ALM (24)

Speicherklasse D; Lesezugriff (r)

Diskreter Alarm (Status, Alarmzeitpunkt (Datum, Zeit) und Wert, der den Alarm ausgelöst hat) Der in dem Parameter DISC LIM eingegebene Wert wird überschritten.

Hinweis: Zusätzlich kann in dieser Parametergruppe der aktive Alarm manuell quittiert werden.

DI FB: DISC LIM (23)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Grenzwert für diskreten Alarm

• [0], 1

DISC PRI (22) DI FB:

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Alarmkonfiguration (Verhalten bei Erreichen des Grenzwertes DISC LIM)

- [0] · die Verletzung des Grenzwertes wird nicht ausgewertet
- 1 keine Benachrichtigung bei Verletzung des Grenzwertes
- 2 · reserviert f
 ür Blockalarme
- 3 bis 7 · die Verletzung des Grenzwertes wird mit der entsprechenden Priorität als Bediener-Hinweis ausgegeben: 3 = Priorität niedrig, 7 = Priorität hoch
- 8 bis 15 · die Verletzung des Grenzwertes wird mit der entsprechenden Priorität als kritischer Alarm ausgegeben: 8 = Priorität niedrig, 15 = Priorität hoch

DI FB: FIELD VAL D (17)

DI FB:

Speicherklasse N; Lesezugriff (r)

Diskrete Eingangsgröße des DI FB (Wert und Status) → Code 48 12/3 für DI1, Code 48 L2/3 für DI2

GRANT_DENY (12) · Parameter wird nicht ausgewertet!

DI FB: IO OPTS (13)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Auswahl des Ein-/Ausgangsverhaltens des DI FB

 INVERT · Setzt zwischen Eingang FIELD_VAL_D und Ausgang OUT_D eine logische NICHT-Verknüpfung.

DI FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Retriebsart

- Target Mode (Gewünschte Betriebsart des Blocks) → Code 48 t4 für DI1, Code 48 t7 für DI2
- Actual Mode (Aktuelle Betriebsart des Blocks; nur Anzeige)

 \rightarrow Code 48 t5 für DI1, Code 48 t8 für DI2

- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart des Blocks; nur Anzeige)
- O/S · Außer Betrieb: Der DI FB wird nicht ausgeführt. Am Ausgang OUT_D wird der letzte Wert ausgegeben
- MAN · Manueller Eingriff durch den Operator: Der Ausgangswert des DI FB kann über den Parameter OUT D vom Bediener direkt vorgegeben werden.
- AUTO · Automatikbetrieb: Der binäre Eingangswert FIELD_VAL_D wird vom Funktionsblock verarbeitet und als OUT_D ausgegeben.

DI FB: OUT_D (8)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Diskrete Ausgangsgröße (Wert und Status) → Code 48 I4/5 für DI1, Code 48 L4/5 für DI2

DI FB: PV D (7)

Speicherklasse D; Lesezugriff (r)

Anzeige des für den Funktionsblock verwendeten diskreten Zustands mit Status **Hinweis:** Der Parameter PV_D ist in der Betriebsart AUTO identisch mit dem Ausgang OUT D.

DI FB: PV FTIME (16)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Filterzeitkonstante [s] des digitalen Filters bis ein binärer Zustand am Eingang des Funktionsblocks in den Parameter PV_D übernommen wird

• [0]

DI FB: SIMULATE D (9)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Simulation: Vorgabe des diskreten Eingangswertes FIELD VAL D mit Status

Hinweis: Die Aktivierung der Simulation ist nur möglich wenn diese am Stellungsregler (Code 48 F3) und im Funktionsblock freigegeben wurde.

DI FR: STATUS OPTS (14)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Statusoptionen zur Festlegung der Statusbehandlung und -verarbeitung

- [UNINITIALIZED] · Nicht initialisiert
- PROPAGATE FAIL FWD · Fehlerstatus an nachgeschalteten Block übergeben

DI FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parameter STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom DI FB weder geprüft noch verarbeitet.

DI FB: ST REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer (DI)

Hinweis: Der Revisionsstand wird bei jeder Änderung eines statischen Parameters inkrementiert.

DI FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

DI FB: **UPDATE EVT (18)**

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Blockdaten geändert wurden, inklusive Änderungsdatum und -uhrzeit

Zuordnung Index - Parameter: DI1 FB und DI2 FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	PV_D
8	OUT_D
9	SIMULATE_D
10	_
11	_
12	GRANT_DENY

Index	Parameter
13	IO_OPTS
14	STATUS_OPTS
15	CHANNEL
16	PV_FTIME
1 <i>7</i>	FIELD_VAL_D
18	UPDATE_EVT
19	BLOCK_ALM
20	ALARM_SUM
21	ACK_OPTIONS
22	DISC_PRI
23	DISC_LIM
24	DISC_ALM

7.5.7 Input Selector Function Block (IS FB)

IS FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

IS FB: BLOCK ALM (24)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

IS FB: **BLOCK ERR (6)**

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler

- OUT OF SERVICE · Außer Betrieb
- CONFIGURATION ERROR · Im Block liegt ein Konfigurationsfehler vor

IS FB: DISABLE 1 (15) bis

DISABLE 4 (18)

Lese- und Schreibzugriff (r/w); Zugang: ALL

Aktivieren/Sperren des Eingangswertes IN_1 (IN_2, IN_3, IN_4) mit zugehörigem Status

- Freigegeben
- Gesperrt

IS FB: GRANT DENY (9) · Parameter wird nicht unterstützt!

IN 1 (11) bis IS FB:

IN 4 (14)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang: ALL

Analoger Eingangswert IN 1 (IN 2, IN 3, IN 4) des IS FB mit zugehörigem Status

IS FB: MIN GOOD (20)

Lese- und Schreibzugriff (r/w)

Mindestanzahl der Eingänge mit Status GUT. Ist die Anzahl der Eingänge mit dem Status GUT kleiner als diese, so wird der Status von OUT auf SCHLECHT gesetzt.

• 0 ... 4, [0]

IS FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Betriebsart IS FB

- Target Mode (Gewünschte Betriebsart)
- Actual Mode (Aktuelle Betriebsart; nur Anzeige)
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart; nur Anzeige)
- AUTO · Automatikbetrieb: Die gewählten analogen Eingangswerte IN_1 bis IN_4 werden vom Funktionsblock verarbeitet und als OUT ausgegeben.
- MAN · Manueller Eingriff durch den Operator: Die Ausgangswerte des IS FB können über den Parameter OUT vom Bediener direkt vorgegeben werden.
- O/S · Außer Betrieb: Der IS FB wird nicht ausgeführt. Am Ausgang OUT wird der letzte Wert ausgegeben.

IS FB: OP SELECT (22)

Lese- und Schreibzugriff (r/w)

Verwendeter Eingang mit zugehörigem Status

• 0 ... 4, [0]

IS FB: OUT (7)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Analoger Ausgangswert OUT des IS FB mit zugehörigem Status

Hinweis: Ist in dem Parameter MODE_BLK der Betriebsmodus MAN angewählt, kann hier der Ausgangswert OUT manuell vorgegeben werden.

IS FB: OUT RANGE (8)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M

Skalierung und Einheit des analogen Ausgangswertes OUT

IS FB: SELECT_TYPE (19)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M

Auswahlkriterium des zu wählenden Eingangswertes IN x

- 1. Wert mit Status GUT
- Minimalwert
- Maximalwert
- Mittelwert
- Durchschnittswert

IS FB: SELECTED (21)

Lesezugriff (r)

Ausgewählter Eingang mit zugehörigem Status

IS FB: ST REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert.

IS FB: STATUS OPTS (10)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Optionen für die Statusbehandlung

- Status UNSICHER wird als GUT verwendet: Ist der Status des Eingangswertes IN x UNSICHER, so wird der Status von OUT auf GUT gesetzt.
- UNSICHER, wenn Betriebsart MAN: Ist die Betriebsart (ACTUAL MODE) MAN, so wird der Status von OUT auf UNSICHER gesetzt.

IS FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parametern STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom IS FB weder geprüft noch verarbeitet.

IS FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

IS FB: **UPDATE EVT (23)**

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Daten geändert wurden, inklusive Änderungsdatum und -uhrzeit

Zuordnung Index – Parameter: IS FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	ОИТ
8	OUT_RANGE
9	GRANT_DENY
10	STATUS_OPTS
11	IN_1
12	IN_2

Index	Parameter
13	IN_3
14	IN_4
15	DISABLE_1
16	DISABLE_2
17	DISABLE_3
18	DISABLE_4
19	SELECT_TYPE
20	MIN_GOOD
21	SELECTED
22	OP_SELECT
23	UPDATE_EVT
24	BLOCK_ALM

Multiple Analog Input Function Block (MAI FB) 7.5.8

MAI FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

MAI FB: BLOCK ALM (17)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

MAI FB: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler

- OUT OF SERVICE · Außer Betrieb
- CONFIGURATION ERROR · Im Block liegt ein Konfigurationsfehler vor

MAI FB: CHANNEL (7)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Zuordnung zwischen dem Ausgang des MAI FB und den logischen Hardwarekanälen (Transducer Block)

• [4]

Hinweis: Um den MAI FB in Betrieb nehmen zu können, muss CHANNEL = 4 gesetzt werden, um diesen dem MAI TRD zuordnen zu können.

MAI FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Betriebsart MALEB

- Taraet Mode (Gewünschte Betriebsart)
- Actual Mode (Aktuelle Betriebsart; nur Anzeige)
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart; nur Anzeige)

- AUTO · Automatikbetrieb: Die gewählten analogen Eingangswerte aus SELECT_MAI_ OUT_1 bis SELECT_MAI_OUT_8 werden vom Funktionsblock verarbeitet und als OUT_1 bis OUT_8 ausgegeben.
- MAN · Manueller Eingriff durch den Operator: Die Ausgangswerte des MAI FB können über die Parameter OUT_1 bis OUT_8 vom Bediener direkt vorgegeben werden.
- O/S · Außer Betrieb: Der MAI FB wird nicht ausgeführt. Am Ausgang OUT_1 bis OUT_8 wird der letzte Wert ausgegeben.

MAI FB: OUT_1 (8) bis

OUT_8 (15)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang: O/M

Analoger Ausgangswert OUT_1 (OUT_2, OUT_3, OUT_4, OUT_5, OUT_6, OUT_7, OUT_8) des MAI FB mit zugehörigem Status

Hinweis: Ist in dem Parameter MODE_BLK der Betriebsmodus MAN angewählt, kann hier der Ausgangswert OUT manuell vorgegeben werden.

MAI FB: ST_REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert.

MAI FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parametern STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom MAI FB weder geprüft noch verarbeitet.

MAI FB: TAG DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

MAI FB: UPDATE EVT (16)

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Daten geändert wurden, inklusive Änderungsdatum und -uhrzeit

Zuordnung Index – Parameter: MAI FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	CHANNEL
8	OUT_1
9	OUT_2

Index	Parameter
10	OUT_3
11	OUT_4
12	OUT_5
13	OUT_6
14	OUT_7
15	OUT_8
16	UPDATE_EVT
17	BLOCK_ALM

7.5.9 Multiple Analog Output Function Block (MAO FB)

MAO FB: ALERT KEY (4)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Identifikationsnummer (ID-Nr.) Anlagenteil

• 1 bis 255, [0]

Diese Information kann vom Feldbus-Host-System zum Sortieren von Alarmen und Ereignissen verwendet werden.

Hinweis: Der Wert 0 ist kein zulässiger Wert. Er wird beim Schreiben in das Gerät mit einer Fehlermeldung zurückgewiesen.

MAO FB: BLOCK ALM (28)

Speicherklasse D; Lesezugriff (r)

Aktueller Blockzustand und anstehende Konfigurations-, Hardware- oder Systemfehler, inklusive Angaben zum Alarmzeitpunkt (Datum, Uhrzeit) bei Auftreten des Fehlers

MAO FB: BLOCK ERR (6)

Speicherklasse D; Lesezugriff (r)

Aktiver Blockfehler

- OUT OF SERVICE · Außer Betrieb
- CONFIGURATION_ERROR · Im Block liegt ein Konfigurationsfehler vor

MAO FB: CHANNEL (7)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O

Zuordnung zwischen dem Ausgang des MAO FB und den logischen Hardwarekanälen (Transducer Block)

• [5]

Hinweis: Um den MAO FB in Betrieb nehmen zu können, muss CHANNEL = 5 gesetzt werden, um diesen dem MAO TRD zuordnen zu können.

MAO FB: FSTATE STATUS (26)

Speicherklasse D; Lesezugriff (r)

Anzeige, welcher Eingang des MAO sich im Fehlerzustand befindet (Sicherheitsverhalten ausgelöst)

MAO FB: FSTATE TIME (17)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitszeit [s]

Zeit von der Erkennung eines Fehlers des für den MAO FB in der aktuellen Betriebsart gültigen Sollwertes bis zum Auslösen des Sicherheitsverhalten

Hinweis: Wenn nach Ablauf dieses Zeitintervalls der Fehler weiterhin vorlieat, wird das Sicherheitsverhalten ausaelöst.

Das Sicherheitsverhalten des MAO FB wird im Parameter MO OPTS dieses Blocks festgelegt.

MAO FB: FSTATE VAL1 (18) bis FSTATE VAL8 (25)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Sicherheitswert 1 bis 8 für die Eingänge IN 1 bis IN 8

Wert für den MAO FB bei ausgelöstem Sicherheitsverhalten

• Wert und Bereich von PV SCALE ±10 %, [0]

Hinweis: Wert wird verwendet, wenn im Parameter MO OPTS die Option FAULT STATE TO VALUE ausgewählt ist.

MAO FB: IN 1 (8) bis

IN 8 (15)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M

Analoger Eingangswert IN des MAO FB mit zugehörigem Status

MAO FB: MO OPTS (16)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Verhalten der Eingänge IN 1 bis IN 8

- bei Fehler Sollwert 1 ... 8 verwenden
- bei Neustart Sollwert 1 ... 8 verwenden

MAO FB: MODE BLK (5)

Speicherklasse N; Lese- und Schreibzugriff (r/w); Zugang O/M/A

Betriebsart MAO FB

- Target Mode (Gewünschte Betriebsart)
- Actual Mode (Aktuelle Betriebsart; nur Anzeige)
- Permitted Mode (Erlaubte Betriebsart, die der Block unterstützt)
- Normal Mode (Normale Betriebsart; nur Anzeige)
- AUTO · Automatikbetrieb: Die gewählten analogen Eingangswerte aus SELECT MAI OUT 1 bis SELECT MAI OUT 8 werden vom Funktionsblock verarbeitet und als OUT 1 bis OUT 8 ausgegeben.

- MAN · Manueller Eingriff durch den Operator: Die Ausgangswerte des MAO FB können über die Parameter OUT_1 bis OUT_8 vom Bediener direkt vorgegeben werden.
- O/S · Außer Betrieb: Der MAI-Algorithmus des Bausteins wird nicht ausgeführt. Am Ausgang OUT_1 bis OUT_8 wird der letzte Wert ausgegeben.

MAO FB: ST REV (1)

Speicherklasse N; Lesezugriff (r)

Statische Revisions-Nummer

Hinweis: Die Revisions-Nummer wird bei jeder Änderung eines statischen Parameters im Block inkrementiert

MAO FB: STRATEGY (3)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Gruppierung zur schnelleren Auswertung der Blöcke

• [0]

Eine Gruppierung erfolgt durch die Eingabe des gleichen Zahlenwertes in den Parametern STRATEGY jedes einzelnen Blocks.

Hinweis: Diese Daten werden vom MAO FB weder geprüft noch verarbeitet.

MAO FB: TAG_DESC (2)

Speicherklasse S; Lese- und Schreibzugriff (r/w); Zugang ALL

Anwenderspezifischer Text zur eindeutigen Identifizierung und Zuordnung des Blocks

• max. 32 Zeichen, [ohne Text]

MAO FB: UPDATE EVT (27)

Speicherklasse D; Lesezugriff (r)

Anzeige ob statische Daten geändert wurden, inklusive Änderungsdatum und -uhrzeit

Zuordnung Index – Parameter: MAO FB

Index	Parameter
0	_
1	ST_REV
2	TAG_DESC
3	STRATEGY
4	ALERT_KEY
5	MODE_BLK
6	BLOCK_ERR
7	CHANNEL
8	IN_1
9	IN_2
10	IN_3
11	IN_4
12	IN_5
13	IN_6
14	IN_7

Index	Parameter
15	IN_8
16	MO_OPTS
17	FSTATE_TIME
18	FSTATE_VAL1
19	FSTATE_VAL2
20	FSTATE_VAL3
21	FSTATE_VAL4
22	FSTATE_VAL5
23	FSTATE_VAL6
24	FSTATE_VAL7
25	FSTATE_VAL8
26	FSTATE_STATUS
27	UPDATE_EVT
28	BLOCK_ALM

SAMSON AG · MESS- UND REGELTECHNIK Weismüllerstraße $3\cdot 60314$ Frankfurt am Main Telefon: 069 4009-0 · Telefax: 069 4009-1507

Internet: http://www.samson.de